Cited time in webofscience Cited time in scopus

Logical magnetophoretic devices for impedimetric analysis of individual cells

Title
Logical magnetophoretic devices for impedimetric analysis of individual cells
Author(s)
Keonmok Kim
DGIST Authors
Keonmok KimCheolGi KimDaeha Seo
Advisor
김철기
Co-Advisor(s)
Daeha Seo
Issued Date
2024
Awarded Date
2024-02-01
Type
Thesis
Description
Magnetophoresis;Selective cells transport;Biomolecule detection;EIS sensor;Cell impedance
Abstract
This thesis deals with magnetic actuation circuits and EIS sensors, which are among the micro-object manipulation technologies that can be classified as Bio-MEMS or Lab-on-a-chip. While the magnetic actuation circuit, aided by microstructures composed of magnetic materials, improved the control of individual particles, its structural limitations due to its reliance on magnetic fields have made it challenging to apply in various research fields. Micro-magnets, designed according to the purpose, perform various functions such as capturing, collecting, and transporting magnetic particles. However, these functions are limited as they are always turned on or off simultaneously due to their synchronization with the rotating magnetic field. Additionally, current studies utilizing EIS for cell impedance are limited to verifying single cell sizes or analyzing cellular components in multiple cells. We have attempted to overcome these traditional limitations and revolutionary problems of magnetic- field-based technologies through several innovative concepts. The presented concept is the localized change of magnetic energy through microelectrodes. Additionally, this precise cell manipulation technology has enabled the development of a module capable of not only sizing single cells but also analyzing their components. Localized magnetic energy changes are implemented through microelectrodes. By applying current to these microelectrodes, additional magnetic energy is added to the existing magnetic actuation circuit. This additional magnetic energy allows selective control of the movement of cells or magnetic particles in a different form than before. Furthermore, these microelectrodes have been created in various shapes to form Logical magnetic actuation circuits that operate depending on the driving current, significantly reducing the power required for operation and thereby minimizing damage to the cells. In the case of the EIS sensor, traditional methods either verified the size of single cells or measured the components of multiple cells to obtain an average value. The limitation of this technology was the difficulty in precisely controlling cells. We have overcome these traditional limitations through the Logical magnetic actuation circuit. Additionally, by placing the EIS sensor in a specific structure, we managed to center the cells. As a result, we have achieved outcomes that suggest the possibility of analyzing components in single cells. By using these two technologies in combination, it is anticipated that precise manipulation of the position of single cells and analysis of their components will be possible. Such analysis of single cell components is expected to lead to a deeper understanding of cells in the future. Keywords: Magnetophoresis, Selective cells transport, Biomolecule detection, EIS sensor, Cell impedance|본 논문에서는 Bio-MEMS 또는 Lab-on-a-chip으로 분류할 수 있는 마이크로객체 조작 기술 중 하나인 자기영동회로과 EIS sensor을 다룬다. 자성체로 구성된 마이크로구조의 도움으로 개별 입자의 제어를 개선한 자기영동회로지만, 자기장 기반의 방법인 만큼은 그 구조적인 한계로 인하여 다양한 연구 분야로 활용하기가 어려웠다. 목적에 따라 사전 설계 된 마이크로자석은 자성 입자를 포획, 수집, 수송하는 등 여러 기능을 수행한다. 그러나, 각 기능들이 회전 자기장과 동기화되어 있기 때문에 항상 동시에 켜지거나 꺼진다는 한계가 있었다. 또한 현재 EIS를 활용한 세포의 임피던스 연구 역시 단일 세포의 크기를 확인하거나, 다수의 세포를 통한 세포 성분 분석이 한계이다
우리는 몇 가지 혁신적인 개념을 통해 자기장 기반 기불들이 가지는 기존 한계와 전혁적인 문제들을 극복하려고 시도했다. 제시된 개념은 미세 전극을 통한 국소적 자기 에너지 변경이다. 또한 이러한 정밀한 세포 조작 기술을 통해 단일 세포의 크기 뿐만 아니라 성분 분석이 가능한 모듈을 만들었다.
국소적인 자기 에너지 변경은 미세 전극을 통해 구현되었다. 자기영동회로를 만들어주고 추가적으로 미세전극을 특정 지역에 만들어 주었다. 이러한 미세 전극에 전류를 인가하여주면 자기 에너지가 기존의 자기영동회로에서 추가되게 된다. 이러한 추가적인 자기 에너지는 세포 또는 자성 입자의 움직임을 기존과 다른 형태로 선택적인 조절을 가능하게 만들어 주었다. 또한 이러한 미세 전극을 다양한 모양으로 만들어 구동 전류에 따라 작동하는 Logical 자기영동회로를 만들어 주었다. Logical 자기영동회로를 이용하여 구동에 필요한 전원을 극단적으로 줄여주어 세포에 손상이 가는 정도를 줄여주었다.
EIS sensor의 경우 기존의 경우 단일세포의 크기를 확인하는 방법이거나 다수의 세포의 두고 측정하여 세포의 성분을 평균값으로 측정하였다. 이러한 기술의 한계는 세포의 정밀한 조절이 힘들다는데 있었다. 우리는 이러한 기존의 한계를 Logical 자기영동회로를 통해 극복하였다. 또한 EIS sensor를 특정한 구조체에 두어 세포의 중심에 오게 만들어 주었다. 그 결과 단일 세포에서 성분 분석이 가능 할 것으로 예상되는 결과를 얻었다.
위의 2가지 기술을 복합적으로 사용하여 단일 세포의 위치를 정밀하게 조작하고 성분 분석이 가능 할 것으로 예상된다. 이러한 단일세포의 성분 분석을 통해 향후 세포의 보다 깊은 이해가 가능할 것으로 기대가 된다.
Table Of Contents
Ⅰ. Introduction
1.1 Cells manipulation 1
1.1.1 Electric method · 1
1.1.2 Optical method 4
1.1.3 Acoustic method 7
1.1.4 Magnetic method 11
1.2 Electric method 14
1.2.1 Patch-Clamp 15
1.2.2 Electroporation 16
1.2.3 Electrochemical Impedance Spectroscopy (EIS) 17
1.3 Disadvantages of advanced technologies and Thesis objective · 19

Ⅱ. Method
2.1 Fabrication · 21
2.1.1 Photo Lithography 21
2.1.2 Magneto Sputtering · 22
2.1.3 Lift-Off Process 23
2.1.4 PECVD 23
2.1.5 RIE 23
2.1.6 POEGMA 24
2.2 Magneto-Optical Kerr Effect(MOKE) 25
2.3 Experiment setup 26
2.3.1 External Rotating Magnetic Field 26
2.3.2 LCR Mater 27
2.4 Preparation of magnetized cells and micro objects as cell replacement 27
2.4.1 Magnetized polystyrene particles by the magnetic labeling 27
2.4.2 Cell culture and magnetized single cell by the magnetic labeling · 27

Ⅲ. Theoretical background
3.1 Characteristics of superparamagnetic particles 29
3.2 Magnetophoresis 30
3.2.1 Fundamental Magnetophoresis 32
3.2.2 Characteristics of magnetophoretic circuit elements 35
3.2.2.1 Particle around the disk micromagnet pattern · 35
3.2.2.2 Particle around the conductor-like micromagnet pattern · 38
3.2.2.3 Particle around the diode-like micromagnet pattern 40
3.2.2.4 Particle around the transistor-like micromagnet pattern · 43
3.2.2.5 Various other magnetophoretic circuits 45
3.3 Analysis using magnetic simulations · 47
3.3.1 Micromagnetic simulation, Mumax3 47
3.3.2 Equation-based MATLAB code · 48
3.4 EIS measurement for cellular property analysis 49
3.4.1 Single Cell Simulation Model · 50
3.4.1.1 Maxwell’s Mixture Theory 51
3.4.1.1 Equivalent Circuit Model(ECM) · 57
3.5 Electromagnetic Field Analysis Methodology in ANSYS Maxwell · 60

Ⅳ. Result and discussion
4.1 Active Magnetophoresis 61
4.1.1 Different shape of magnetophoresis 62
4.1.2 Different structure of magnetophoresis 64
4.2 Cells Impedance · 68
4.2.1 2D EIS 68
4.2.1.1 3-type of 2D EIS 69
4.2.1.2 Cell impedance measurements using SAW electrodes 71
4.2.1.3 Single cell capacitance measurements using unbalance electrode 72
4.2.1.4 Single cell Impedance measurements using balance electrode 74
4.2.2 3D EIS 75
4.2.3.1 3D structure of su-8 pillar 76
4.2.3.2 single cell Impedance measurements of frequency dependence 77

V. Conclusion
5.1Conclusion of my works · 79
URI
http://hdl.handle.net/20.500.11750/48016

http://dgist.dcollection.net/common/orgView/200000732156
DOI
10.22677/THESIS.200000732156
Degree
Doctor
Department
Department of Physics and Chemistry
Publisher
DGIST
Related Researcher
  • 김철기 Kim, CheolGi
  • Research Interests Magnetic Materials and Spintronics; Converging Technology of Nanomaterials and Biomaterials; Bio-NEMS;MEMS
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Physics and Chemistry Theses Ph.D.

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE