본 논문에서는 이산 웨이블릿 변환을 통해 추출된 시간 영역과 주파수 영역의 특징들을활용하여 심박수변이도를 확률적인 지식으로 분석할 수 있는 방법을 제안하였다. 제안된 방법에서 지식획득 알고리즘은 규칙생성과 규칙평가 단계로 구성되어 있으며, 규칙생성에서는 ROC 분석을 통해수치적인 속성값을 이산화된 구간으로 변환하고, 서로 다른 의사결정값을 포함하는 구간들 사이에 일관성 정도를 비교함으로써 감축된 규칙-집합을 생성한다. 이때 규칙-집합 내에 각 규칙에 대해서 확률적 해석을 위한 3가지 척도를 추정하였다. 제안된 모형의 효과성은 심혈관질환 병력을 가진 58명의심전도 데이터로부터 심방세동을 식별할 수 있는 5가지 규칙을 생성하였고, 이들 규칙의 분별력을 평가하였다. 실험결과, 제안된 모형으로부터 생성된 지식은 4가지 성능평가 척도에 대해서 각각 93%의정확도를 보여주었다.
Research Interests
Data Mining & Machine Learning for Text & Multimedia; Brain-Sense-ICTConvergence Computing; Computational Olfaction Measurement; Simulation&Modeling