Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Ramakrishnan, Prakash -
dc.contributor.author Baek, Seong Ho -
dc.contributor.author Park, Yi Seul -
dc.contributor.author Kim, Jae Hyun -
dc.date.available 2018-01-25T01:06:56Z -
dc.date.created 2017-04-20 -
dc.date.issued 2017-05 -
dc.identifier.issn 0008-6223 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/5050 -
dc.description.abstract Iron sulfide based lithium primary batteries have shown commercial success in the battery market, since then it has been considered as the most promising candidate to substitute commercial carbon-based anodes for rechargeable lithium-ion batteries. Nevertheless, practical implementation of iron sulfide anode in lithium secondary battery is greatly suffered by huge volume expansion during repeated conversion process. To address these issues, we have designed a rational three-dimensional hierarchical honey comb-like iron mono-sulfide (FeS) nanoparticles (nps) encapsulated by dual heteroatoms (nitrogen and sulfur) doped carbon nanostructures (HFSC), using metal organic complex. A series of HFSC composites: compact- and free-bound carbon framework, thickness of encapsulated nanolayer carbon (∼1.5–∼3.5 nm) over FeS nps, average size distribution of FeS nps over the carbon surface- and edge-sites, amount of nitrogen (7.18–3.26 at.%) and sulfur (6.63–4.64 at.%) functionalities, have been easily controlled via synthesis temperature. The HFSC anode of desirable physiochemical properties delivers the maximum discharge capacities of 1106.9 and 616.9 mAhg−1 at low and high current densities of 100 and 1100 mAg−1, respectively. Further, these novel HFSC composites deliver appreciable cycle stability of 90% for 50 cycles at a moderate current density of 500 mAg−1. © 2017 Elsevier Ltd -
dc.language English -
dc.publisher Elsevier Ltd -
dc.title Nitrogen and sulfur co-doped metal monochalcogen encapsulated honeycomb like carbon nanostructure as a high performance lithium-ion battery anode material -
dc.type Article -
dc.identifier.doi 10.1016/j.carbon.2017.01.011 -
dc.identifier.wosid 000395601300027 -
dc.identifier.scopusid 2-s2.0-85009168003 -
dc.identifier.bibliographicCitation Carbon, v.115, pp.249 - 260 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordPlus ENHANCED ELECTROCHEMICAL PERFORMANCE -
dc.subject.keywordPlus ELECTRODE MATERIALS -
dc.subject.keywordPlus RAMAN-SPECTROSCOPY -
dc.subject.keywordPlus ENERGY-CONVERSION -
dc.subject.keywordPlus RATE CAPABILITY -
dc.subject.keywordPlus S BATTERIES -
dc.subject.keywordPlus GRAPHENE -
dc.subject.keywordPlus FES -
dc.subject.keywordPlus STORAGE -
dc.subject.keywordPlus NANOSHEETS -
dc.citation.endPage 260 -
dc.citation.startPage 249 -
dc.citation.title Carbon -
dc.citation.volume 115 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Chemistry; Materials Science -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Materials Science, Multidisciplinary -
dc.type.docType Article -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Smart Textile Convergence Research Group 1. Journal Articles
Division of Energy & Environmental Technology 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE