Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Lee, Wonhee John -
dc.contributor.author Kim, Soo Jin -
dc.contributor.author Ahn, Yongdeok -
dc.contributor.author Park, Jiseong -
dc.contributor.author Jin, Siwoo -
dc.contributor.author Jang, Juhee -
dc.contributor.author Jeong, Jinju -
dc.contributor.author Park, Minsoo -
dc.contributor.author Lee, Young-Sam -
dc.contributor.author Lee, Junyeop -
dc.contributor.author Seo, Daeha -
dc.date.accessioned 2024-03-28T16:40:13Z -
dc.date.available 2024-03-28T16:40:13Z -
dc.date.created 2024-02-01 -
dc.date.issued 2024-01 -
dc.identifier.issn 1530-6984 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/56539 -
dc.description.abstract Understanding the spatial organization of membrane proteins is crucial for unraveling key principles in cell biology. The reaction-diffusion model is commonly used to understand biochemical patterning; however, applying reaction-diffusion models to subcellular phenomena is challenging because of the difficulty in measuring protein diffusivity and interaction kinetics in the living cell. In this work, we investigated the self-organization of the plasmalemma vesicle-associated protein (PLVAP), which creates regular arrangements of fenestrated ultrastructures, using single-molecule tracking. We demonstrated that the spatial organization of the ultrastructures is associated with a decrease in the association rate by actin destabilization. We also constructed a reaction-diffusion model that accurately generates a hexagonal array with the same 130 nm spacing as the actual scale and informs the stoichiometry of the ultrastructure, which can be discerned only through electron microscopy. Through this study, we integrated single-molecule experiments and reaction-diffusion modeling to surpass the limitations of static imaging tools and proposed emergent properties of the PLVAP ultrastructure. © 2024 American Chemical Society -
dc.language English -
dc.publisher American Chemical Society -
dc.title From Homogeneity to Turing Pattern: Kinetically Controlled Self-Organization of Transmembrane Protein -
dc.type Article -
dc.identifier.doi 10.1021/acs.nanolett.3c03637 -
dc.identifier.wosid 001162298000001 -
dc.identifier.scopusid 2-s2.0-85182584269 -
dc.identifier.bibliographicCitation Nano Letters, v.24, no.6, pp.1882 - 1890 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor PLVAP -
dc.subject.keywordAuthor reaction−diffusion -
dc.subject.keywordAuthor single-molecule tracking -
dc.subject.keywordAuthor self-organization -
dc.subject.keywordAuthor pattern formation -
dc.subject.keywordPlus CELL -
dc.subject.keywordPlus DIAPHRAGMS -
dc.subject.keywordPlus DIMERIZATION -
dc.subject.keywordPlus ACTIVATION -
dc.subject.keywordPlus TRACKING -
dc.subject.keywordPlus MOTION -
dc.subject.keywordPlus STATES -
dc.subject.keywordPlus PV-1 -
dc.subject.keywordPlus REACTION-DIFFUSION MODEL -
dc.subject.keywordPlus PHASE-SEPARATION -
dc.identifier.url https://pubs.acs.org/cms/10.1021/nalefd.2024.24.issue-6/asset/nalefd.2024.24.issue-6.xlargecover-2.jpg -
dc.citation.endPage 1890 -
dc.citation.number 6 -
dc.citation.startPage 1882 -
dc.citation.title Nano Letters -
dc.citation.volume 24 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science; Physics -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter -
dc.type.docType Article -

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE