Detail View

Title
Ferroelectric 2D SnS2 Analog Synaptic FET
Issued Date
2024-04
Citation
Song, Chong-Myeong. (2024-04). Ferroelectric 2D SnS2 Analog Synaptic FET. Advanced Science, 11(16). doi: 10.1002/advs.202308588
Type
Article
Author Keywords
synaptic devicetin disulfide (SnS2)ferroelectricsfield-effect transistor
Keywords
PLASTICITYMEMORY
ISSN
2198-3844
Abstract
In this study, the development and characterization of 2D ferroelectric field-effect transistor (2D FeFET) devices are presented, utilizing nanoscale ferroelectric HfZrO2 (HZO) and 2D semiconductors. The fabricated device demonstrated multi-level data storage capabilities. It successfully emulated essential biological characteristics, including excitatory/inhibitory postsynaptic currents (EPSC/IPSC), Pair-Pulse Facilitation (PPF), and Spike-Timing Dependent Plasticity (STDP). Extensive endurance tests ensured robust stability (107 switching cycles, 105 s (extrapolated to 10 years)), excellent linearity, and high Gmax/Gmin ratio (>105), all of which are essential for realizing multi-level data states (>7-bit operation). Beyond mimicking synaptic functionalities, the device achieved a pattern recognition accuracy of ≈94% on the Modified National Institute of Standards and Technology (MNIST) handwritten dataset when incorporated into a neural network, demonstrating its potential as an effective component in neuromorphic systems. The successful implementation of the 2D FeFET device paves the way for the development of high-efficiency, ultralow-power neuromorphic hardware which is in sub-femtojoule (48 aJ/spike) and fast response (1 µs), which is 104 folds faster than human synapse (≈10ms). The results of the research underline the potential of nanoscale ferroelectric and 2D materials in building the next generation of artificial intelligence technologies. © 2024 The Authors. Advanced Science published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
URI
http://hdl.handle.net/20.500.11750/56562
DOI
10.1002/advs.202308588
Publisher
Wiley
Show Full Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

이신범
Lee, Shinbuhm이신범

Department of Physics and Chemistry

read more

Total Views & Downloads