Detail View

DC Field Value Language
dc.contributor.author Huang, Xian -
dc.contributor.author Liu, Yuhao -
dc.contributor.author Kong, Gil Woo -
dc.contributor.author Seo, Jung Hun -
dc.contributor.author Ma, Yinji -
dc.contributor.author Jang, Kyung-In -
dc.contributor.author Fan, Jonathan A. -
dc.contributor.author Mao, Shimin -
dc.contributor.author Chen, Qiwen -
dc.contributor.author Li, Daizhen -
dc.contributor.author Liu, Hank -
dc.contributor.author Wang, Chuxuan -
dc.contributor.author Patnaik, Dwipayan -
dc.contributor.author Tian, Limei -
dc.contributor.author Salvatore, Giovanni A. -
dc.contributor.author Feng, Xue -
dc.contributor.author Ma, Zhenqiang -
dc.contributor.author Huang, Yonggang -
dc.contributor.author Rogers, John A. -
dc.date.accessioned 2024-08-08T19:40:13Z -
dc.date.available 2024-08-08T19:40:13Z -
dc.date.created 2024-03-14 -
dc.date.issued 2016-10 -
dc.identifier.issn 2096-1030 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/56736 -
dc.description.abstract Epidermal electronic systems feature physical properties that approximate those of the skin, to enable intimate, long-lived skin interfaces for physiological measurements, human–machine interfaces and other applications that cannot be addressed by wearable hardware that is commercially available today. A primary challenge is power supply; the physical bulk, large mass and high mechanical modulus associated with conventional battery technologies can hinder efforts to achieve epidermal characteristics, and near-field power transfer schemes offer only a limited operating distance. Here we introduce an epidermal, far-field radio frequency (RF) power harvester built using a modularized collection of ultrathin antennas, rectifiers and voltage doublers. These components, separately fabricated and tested, can be integrated together via methods involving soft contact lamination. Systematic studies of the individual components and the overall performance in various dielectric environments highlight the key operational features of these systems and strategies for their optimization. The results suggest robust capabilities for battery-free RF power, with relevance to many emerging epidermal technologies. © The Author(s) 2016. -
dc.language English -
dc.publisher Nature Publishing Group | Chinese Academy of Sciences, Institute of Electronics -
dc.title Epidermal radio frequency electronics for wireless power transfer -
dc.type Article -
dc.identifier.doi 10.1038/micronano.2016.52 -
dc.identifier.wosid 000394949900001 -
dc.identifier.scopusid 2-s2.0-85011284180 -
dc.identifier.bibliographicCitation Huang, Xian. (2016-10). Epidermal radio frequency electronics for wireless power transfer. Microsystems & Nanoengineering, 2. doi: 10.1038/micronano.2016.52 -
dc.description.isOpenAccess TRUE -
dc.subject.keywordAuthor antenna design -
dc.subject.keywordAuthor epidermal electronics -
dc.subject.keywordAuthor modularization -
dc.subject.keywordAuthor silicon nanomembrane -
dc.subject.keywordAuthor soft-contact lamination -
dc.subject.keywordAuthor specific absorption rate -
dc.subject.keywordAuthor wireless power -
dc.subject.keywordPlus CARE-SYSTEM -
dc.subject.keywordPlus SOFT -
dc.subject.keywordPlus BATTERIES -
dc.subject.keywordPlus CIRCUITS -
dc.subject.keywordPlus SENSORS -
dc.subject.keywordPlus MOBILE -
dc.subject.keywordPlus HOME -
dc.citation.title Microsystems & Nanoengineering -
dc.citation.volume 2 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Science & Technology - Other Topics; Instruments & Instrumentation -
dc.relation.journalWebOfScienceCategory Nanoscience & Nanotechnology; Instruments & Instrumentation -
dc.type.docType Article -
Show Simple Item Record

File Downloads

공유

qrcode
공유하기

Related Researcher

장경인
Jang, Kyung-In장경인

Department of Robotics and Mechatronics Engineering

read more

Total Views & Downloads