Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Kang, Jiwoong -
dc.contributor.author Lim, Jaejin -
dc.contributor.author Lee, Hyuntae -
dc.contributor.author Park, Seongsu -
dc.contributor.author Bak, Cheol -
dc.contributor.author Shin, Yewon -
dc.contributor.author An, Hyeongguk -
dc.contributor.author Lee, Mingyu -
dc.contributor.author Lee, Minju -
dc.contributor.author Lee, Soyeon -
dc.contributor.author Choi, Byungjun -
dc.contributor.author Kang, Dongyoon -
dc.contributor.author Chae, Sujong -
dc.contributor.author Lee, Yong Min -
dc.contributor.author Lee, Hongkyung -
dc.date.accessioned 2024-09-05T16:40:12Z -
dc.date.available 2024-09-05T16:40:12Z -
dc.date.created 2024-06-24 -
dc.date.issued 2024-08 -
dc.identifier.issn 2198-3844 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/56846 -
dc.description.abstract To recharge lithium-ion batteries quickly and safely while avoiding capacity loss and safety risks, a novel electrode design that minimizes cell polarization at a higher current is highly desired. This work presents a dual-layer electrode (DLE) technology via sequential coating of two different anode materials to minimize the overall electrode resistance upon fast charging. Electrochemical impedance spectroscopy and distribution of relaxation timesanalysis revealed the dynamic evolution of electrode impedances in synthetic graphite (SG) upon a change in the state of charge (SOC), whereas the natural graphite (NG) maintains its original impedance regardless of SOC variation. This disparity dictates the sequence of the NG and SG coating layers within the DLE, considering the temporal SOC gradient developed upon fast charging. Simulation and experimental results suggest that DLE positioning NG and SG on the top (second-layer) and bottom (first-layer), respectively, can effectively reduce the overall resistance at a 4C-rate (15-min charging), demonstrating two times higher capacity retention (61.0%) over 200 cycles than its counterpart with reversal sequential coating, and is higher than single-layer electrodes using NG or NG/SG binary mixtures. Hence, this study can guide the combinatorial sequence for multi-layer coating of various active materials for a lower-resistivity, thick-electrode design. © 2024 The Authors. Advanced Science published by Wiley-VCH GmbH. -
dc.language English -
dc.publisher Wiley -
dc.title Sequential Effect of Dual-Layered Hybrid Graphite Anodes on Electrode Utilization During Fast-Charging Li-Ion Batteries -
dc.type Article -
dc.identifier.doi 10.1002/advs.202403071 -
dc.identifier.wosid 001244684200001 -
dc.identifier.scopusid 2-s2.0-85195638492 -
dc.identifier.bibliographicCitation Advanced Science, v.11, no.31 -
dc.description.isOpenAccess TRUE -
dc.subject.keywordAuthor fast-charging batteries -
dc.subject.keywordAuthor temporal SOC gradient -
dc.subject.keywordAuthor dual-layered electrodes -
dc.subject.keywordAuthor hybrid graphite anodes -
dc.subject.keywordAuthor resistance distribution -
dc.subject.keywordPlus DEPOSITION -
dc.subject.keywordPlus CAPACITY -
dc.subject.keywordPlus DISORDER -
dc.subject.keywordPlus LITHIUM-ION -
dc.subject.keywordPlus TRANSPORT PHENOMENA -
dc.subject.keywordPlus NATURAL GRAPHITE -
dc.subject.keywordPlus ENERGY -
dc.subject.keywordPlus CHALLENGES -
dc.subject.keywordPlus PERFORMANCE -
dc.subject.keywordPlus CELLS -
dc.citation.number 31 -
dc.citation.title Advanced Science -
dc.citation.volume 11 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary -
dc.type.docType Article -

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE