Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Song, Yuyeon -
dc.contributor.author Maia, Renata A. -
dc.contributor.author Ritleng, Vincent -
dc.contributor.author Louis, Benoit -
dc.contributor.author Shanmugam, Sangaraju -
dc.date.accessioned 2024-09-06T14:10:15Z -
dc.date.available 2024-09-06T14:10:15Z -
dc.date.created 2024-03-28 -
dc.date.issued 2024-03 -
dc.identifier.issn 2574-0962 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/56851 -
dc.description.abstract The electrocatalytic nitric oxide reduction reaction (NORR) has attracted significant attention as an ecofriendly alternative to the conventional Haber-Bosch process for producing ammonia (NH3). However, the poor selectivity to NH3 and low catalyst stability under harsh conditions are great challenges in NORR. Herein, the core-shell structure of nickel nanoparticles enclosed with a nitrogen-doped carbon layer (Ni@NC) electrocatalyst derived from covalent organic frameworks is employed for high performance in NORR. The Ni@NC-700 achieved the highest FENH3 of 82.94% with an NH3 yield rate of 19.00 mu mol cm(-2) h(-1) at 0.16 V (vs reversible hydrogen electrode) in a 0.1 M HClO4 electrolyte. Control experiments revealed that nickel nanoparticles (Ni NPs) acted as active centers in Ni@NC for efficient production of NH3. The ideal carbon shell protection of Ni NPs and the high inherent catalytic TOF of Ni@NC-700 revealed a promising candidate for an efficient NORR electrocatalyst. The stability test demonstrated the remarkable stability of Ni@NC. The Ni NPs were protected by carbon nanostructures resembling core-shell catalysts, preventing metal dissolution during rough electrolysis. -
dc.language English -
dc.publisher American Chemical Society -
dc.title Nickel Nanoparticles Confined in Core-Shell Derived from Covalent Organic Framework for the Efficient Electrocatalytic NO Reduction to NH3 -
dc.type Article -
dc.identifier.doi 10.1021/acsaem.4c00048 -
dc.identifier.wosid 001179760500001 -
dc.identifier.scopusid 2-s2.0-85186651579 -
dc.identifier.bibliographicCitation ACS Applied Energy Materials, v.7, no.6, pp.2514 - 2523 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor covalent organic framework -
dc.subject.keywordAuthor ammonia -
dc.subject.keywordAuthor electrocatalysis -
dc.subject.keywordAuthor nitric oxide reduction reaction -
dc.subject.keywordAuthor core-shellnanostructure -
dc.subject.keywordPlus AMMONIA -
dc.subject.keywordPlus CATALYSIS -
dc.citation.endPage 2523 -
dc.citation.number 6 -
dc.citation.startPage 2514 -
dc.citation.title ACS Applied Energy Materials -
dc.citation.volume 7 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Chemistry; Energy & Fuels; Materials Science -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary -
dc.type.docType Article -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Energy Science and Engineering Advanced Energy Materials Laboratory 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE