Detail View

Title
Specification of neural circuit architecture shaped by context-dependent patterned LAR-RPTP microexons
Issued Date
2024-03
Citation
Han, Kyung Ah. (2024-03). Specification of neural circuit architecture shaped by context-dependent patterned LAR-RPTP microexons. Nature Communications, 15(1), 1624. doi: 10.1038/s41467-024-45695-0
Type
Article
Keywords
REVEALSNETWORKCOMPLEXESINSIGHTSHIGH-RESOLUTIONMECHANISMEXPRESSIONQUANTIFICATIONTRANSLATIONNEUREXINS
ISSN
2041-1723
Abstract
LAR-RPTPs are evolutionarily conserved presynaptic cell-adhesion molecules that orchestrate multifarious synaptic adhesion pathways. Extensive alternative splicing of LAR-RPTP mRNAs may produce innumerable LAR-RPTP isoforms that act as regulatory “codes” for determining the identity and strength of specific synapse signaling. However, no direct evidence for this hypothesis exists. Here, using targeted RNA sequencing, we detected LAR-RPTP mRNAs in diverse cell types across adult male mouse brain areas. We found pronounced cell-type–specific patterns of two microexons, meA and meB, in Ptprd mRNAs. Moreover, diverse neural circuits targeting the same neuronal populations were dictated by the expression of different Ptprd variants with distinct inclusion patterns of microexons. Furthermore, conditional ablation of Ptprd meA+ variants at presynaptic loci of distinct hippocampal circuits impaired distinct modes of synaptic transmission and objection-location memory. Activity-triggered alterations of the presynaptic Ptprd meA code in subicular neurons mediates NMDA receptor-mediated postsynaptic responses in CA1 neurons and objection-location memory. Our data provide the evidence of cell-type- and/or circuit-specific expression patterns in vivo and physiological functions of LAR-RPTP microexons that are dynamically regulated. © The Author(s) 2024.
URI
http://hdl.handle.net/20.500.11750/56853
DOI
10.1038/s41467-024-45695-0
Publisher
Nature Publishing Group
Show Full Item Record

File Downloads

공유

qrcode
공유하기

Related Researcher

엄지원
Um, Ji Won엄지원

Department of Brain Sciences

read more

Total Views & Downloads