Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Roy, Avishek -
dc.contributor.author Mondal, Ayan -
dc.contributor.author Inta, Harish Reddy -
dc.contributor.author Ghosh, Sourav -
dc.contributor.author Paliwal, Khushboo S. -
dc.contributor.author Debnath, Soumalya -
dc.contributor.author Valsan, Ajith Ambattuparambil -
dc.contributor.author Mahalingam, Venkataramanan -
dc.date.accessioned 2024-09-11T09:10:15Z -
dc.date.available 2024-09-11T09:10:15Z -
dc.date.created 2024-03-14 -
dc.date.issued 2024-04 -
dc.identifier.issn 2633-5409 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/56864 -
dc.description.abstract Designing of suitable electrocatalysts for efficient alkaline hydrogen evolution reaction (HER) is a challenging task owing to the additional energy consumption to disintegrate the H-OH bond in the Volmer step. Under these circumstances, strong synergistic interactions between Ni/Co derivatives with 1T-MoS2 can frequently accelerate the alkaline HER. This study addresses the challenge of designing efficient electrocatalysts for the alkaline HER, focusing on minimizing additional energy consumption during the Volmer step. A composite structure, 1T-MoS2-Ni(18), was synthesized using 1T-MoS2 and metallic Ni for effective alkaline HER catalysis. Rigorous physical characterization confirmed the formation of an interfacial structure between 1T-MoS2 and metallic Ni. The resulting composite exhibited very good alkaline HER performance, requiring only a 120 mV overpotential for a standard 10 mA cm−2geo current density. The improved performance was attributed to feasible water dissociation over the metallic Ni promoter, facile electron migration kinetics through the interfacial structure, and enhanced per-site activity. In addition, for the practical execution of an alkaline electrolyzer, NiS nanoparticles were synthesized as an OER catalyst, exhibiting only a 310 mV overpotential (1.54 V vs. RHE) to attain a 10 mA cm−2geo current density. The alkaline electrolyzer, (NiS (+)||1T-MoS2-Ni(18) (−)), delivered a 1.68 V cell potential to sustain a 10 mA cm−2geo current density with excellent stability for up to 48 h. © 2024 RSC. -
dc.language English -
dc.publisher Royal Society of Chemistry -
dc.title Exploring the electrocatalytic prowess of a synergistic 1T-MoS2-metallic Ni composite towards alkaline hydrogen evolution -
dc.type Article -
dc.identifier.doi 10.1039/d3ma01077e -
dc.identifier.wosid 001173716200001 -
dc.identifier.scopusid 2-s2.0-85186239259 -
dc.identifier.bibliographicCitation Materials Advances, v.5, no.7, pp.2805 - 2817 -
dc.description.isOpenAccess TRUE -
dc.subject.keywordAuthor Hydrogen bonds -
dc.subject.keywordAuthor Layered semiconductors -
dc.subject.keywordAuthor Metal nanoparticles -
dc.subject.keywordAuthor Nickel -
dc.subject.keywordAuthor Electrolysis -
dc.subject.keywordAuthor Germanium compounds -
dc.subject.keywordPlus NITROGEN -
dc.subject.keywordPlus SURFACE -
dc.subject.keywordPlus PHASE -
dc.subject.keywordPlus HIGHLY EFFICIENT -
dc.subject.keywordPlus MOS2 NANOSHEETS -
dc.subject.keywordPlus HYBRID NANOSHEET -
dc.subject.keywordPlus OXYGEN EVOLUTION -
dc.subject.keywordPlus 1T-MOS2 -
dc.subject.keywordPlus CARBON -
dc.subject.keywordPlus CATALYST -
dc.citation.endPage 2817 -
dc.citation.number 7 -
dc.citation.startPage 2805 -
dc.citation.title Materials Advances -
dc.citation.volume 5 -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Materials Science -
dc.relation.journalWebOfScienceCategory Materials Science, Multidisciplinary -
dc.type.docType Article -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
ETC 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE