Detail View

Unravelling the effect of Ti3+/Ti4+ active sites dynamic on reaction pathways in direct gas-solid-phase CO2 photoreduction
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Powar, Niket Suresh -
dc.contributor.author Kim, Sanghoon -
dc.contributor.author Lee, Junho -
dc.contributor.author Gong, Eunhee -
dc.contributor.author Hiragond, Chaitanya B. -
dc.contributor.author Kim, Dongyun -
dc.contributor.author Zhang, Tierui -
dc.contributor.author Kim, Minho -
dc.contributor.author In, Su-Il -
dc.date.accessioned 2024-10-25T19:40:18Z -
dc.date.available 2024-10-25T19:40:18Z -
dc.date.created 2024-04-23 -
dc.date.issued 2024-09 -
dc.identifier.issn 0926-3373 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/57027 -
dc.description.abstract Converting CO2 to CH4 by solar-powered catalysis involves complex steps that produce a range of by-products. Therefore, designing efficient heterostructures for a particular chemical synthesis is challenging. The optimisation of photocatalyst surfaces can achieve the desired CO2 photoreduction pathway. Herein, we developed TiO2/CdSe nanocrystals with both amorphous and crystalline TiO2 surfaces. In situ EXAFS analysis revealed that the amorphous surface contains abundant active Ti3+ sites, while the crystalline surface is limited. Moreover, the amorphous surface of TiO2/CdSe exhibits self-regenerating Ti3+ active sites, which enable a novel CH4 cycle. Density functional theory calculation showed that an amorphous structure enhances electron transfer and localisation to Ti3+, favouring CO2 adsorption. In situ DRIFTS analysis showed different CO2 to CH4 pathways on both surfaces. These results show the potential for enhanced photocatalytic CO2 reduction through surface engineering, which has far-reaching implications for sustainable energy conversion. © 2024 Elsevier B.V. -
dc.language English -
dc.publisher Elsevier -
dc.title Unravelling the effect of Ti3+/Ti4+ active sites dynamic on reaction pathways in direct gas-solid-phase CO2 photoreduction -
dc.type Article -
dc.identifier.doi 10.1016/j.apcatb.2024.124006 -
dc.identifier.wosid 001358089500001 -
dc.identifier.scopusid 2-s2.0-85189749162 -
dc.identifier.bibliographicCitation Powar, Niket Suresh. (2024-09). Unravelling the effect of Ti3+/Ti4+ active sites dynamic on reaction pathways in direct gas-solid-phase CO2 photoreduction. Applied Catalysis B: Environment and Energy, 352. doi: 10.1016/j.apcatb.2024.124006 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor Charge separation -
dc.subject.keywordAuthor Heterostructure -
dc.subject.keywordAuthor Amorphous photocatalyst -
dc.subject.keywordAuthor CO2 photoreduction -
dc.subject.keywordPlus TOTAL-ENERGY CALCULATIONS -
dc.subject.keywordPlus ABSORPTION SPECTRA -
dc.subject.keywordPlus SOLAR LIGHT -
dc.subject.keywordPlus TIO2 -
dc.subject.keywordPlus ACTIVATION -
dc.subject.keywordPlus DENSITY -
dc.subject.keywordPlus ANATASE -
dc.citation.title Applied Catalysis B: Environment and Energy -
dc.citation.volume 352 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Chemistry; Engineering -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Engineering, Environmental; Engineering, Chemical -
dc.type.docType Article -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

인수일
In, Su-Il인수일

Department of Energy Science and Engineering

read more

Total Views & Downloads