Detail View

Metadata Downloads

DC Field Value Language
dc.contributor.author Lim, Jungmoon -
dc.contributor.author Heo, Su Jin -
dc.contributor.author Jung, Min -
dc.contributor.author Kim, Taehun -
dc.contributor.author Byeon, Junsung -
dc.contributor.author Park, Hongju -
dc.contributor.author Jang, Jae Eun -
dc.contributor.author Hong, John -
dc.contributor.author Moon, Janghyuk -
dc.contributor.author Pak, Sangyeon -
dc.contributor.author Cha, Seungnam -
dc.date.accessioned 2024-12-23T21:40:20Z -
dc.date.available 2024-12-23T21:40:20Z -
dc.date.created 2024-09-03 -
dc.date.issued 2024-12 -
dc.identifier.issn 1613-6810 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/57397 -
dc.description.abstract Despite the importance of the stability of the 2D catalysts in harsh electrolyte solutions, most studies have focused on improving the catalytic performance of molybdenum disulfide (MoS2) catalysts rather than the sustainability of hydrogen evolution. In previous studies, the vulnerability of MoS2 crystals is reported that the moisture and oxygen molecules can cause the oxidation of MoS2 crystals, accelerating the degradation of crystal structure. Therefore, optimization of catalytic stability is crucial for approaching practical applications in 2D catalysts. Here, it is proposed that monolayered MoS2 catalysts passivated with an atomically thin hexagonal boron nitride (h-BN) layer can effectively sustain hydrogen evolution reaction (HER) and demonstrate the ultra-high current density (500 mA cm⁻2 over 11 h) and super stable (64 h at 150 mA cm⁻2) catalytic performance. It is further confirmed with density functional theory (DFT) calculations that the atomically thin h-BN layer effectively prevents direct adsorption of water/acid molecules while allowing the protons to be adsorbed/penetrated. The selective penetration of protons and prevention of crystal structure degradation lead to maintained catalytic activity and maximized catalytic stability in the h-BN covered MoS2 catalysts. These findings propose a promising opportunity for approaching the practical application of 2D MoS2 catalysts having long-term stability at high-current operation. © 2024 Wiley-VCH GmbH. -
dc.language English -
dc.publisher Wiley -
dc.title Highly Sustainable h-BN Encapsulated MoS2 Hydrogen Evolution Catalysts -
dc.type Article -
dc.identifier.doi 10.1002/smll.202402272 -
dc.identifier.wosid 001292034700001 -
dc.identifier.scopusid 2-s2.0-85201156256 -
dc.identifier.bibliographicCitation Lim, Jungmoon. (2024-12). Highly Sustainable h-BN Encapsulated MoS2 Hydrogen Evolution Catalysts. Small, 20(49). doi: 10.1002/smll.202402272 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor 2D MoS 2 -
dc.subject.keywordAuthor hexagonal boron nitride (h-BN) -
dc.subject.keywordAuthor high current operation -
dc.subject.keywordAuthor high-durability catalysts -
dc.subject.keywordAuthor hydrogen evolution reaction (HER) -
dc.subject.keywordAuthor long-term stability -
dc.subject.keywordPlus GRAPHENE -
dc.subject.keywordPlus METALS -
dc.subject.keywordPlus SITES -
dc.subject.keywordPlus MONOLAYER MOS2 -
dc.subject.keywordPlus NANOSHEETS -
dc.subject.keywordPlus SUBSTRATE -
dc.subject.keywordPlus TRANSPORT -
dc.subject.keywordPlus OXIDATION -
dc.subject.keywordPlus EFFICIENT -
dc.subject.keywordPlus MEMBRANE -
dc.citation.number 49 -
dc.citation.title Small -
dc.citation.volume 20 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science; Physics -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter -
dc.type.docType Article -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

장재은
Jang, Jae Eun장재은

Department of Electrical Engineering and Computer Science

read more

Total Views & Downloads