Detail View

DC Field Value Language
dc.contributor.author Gyan-Barimah, Caleb -
dc.contributor.author Mantha, Jagannath Sai Pavan -
dc.contributor.author Lee, Ha-Young -
dc.contributor.author Wei, Yi -
dc.contributor.author Shin, Cheol-Hwan -
dc.contributor.author Maulana, Muhammad Irfansyah -
dc.contributor.author Kim, Junki -
dc.contributor.author Henkelman, Graeme -
dc.contributor.author Yu, Jong-Sung -
dc.date.accessioned 2024-12-24T15:10:20Z -
dc.date.available 2024-12-24T15:10:20Z -
dc.date.created 2024-09-03 -
dc.date.issued 2024-08 -
dc.identifier.issn 2041-1723 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/57414 -
dc.description.abstract Alloys of platinum with alkaline earth metals promise to be active and highly stable for fuel cell applications, yet their synthesis in nanoparticles remains a challenge due to their high negative reduction potentials. Herein, we report a strategy that overcomes this challenge by preparing platinum-magnesium (PtMg) alloy nanoparticles in the solution phase. The PtMg nanoparticles exhibit a distinctive structure with a structurally ordered intermetallic core and a Pt-rich shell. The PtMg/C as a cathode catalyst in a hydrogen-oxygen fuel cell exhibits a mass activity of 0.50 A mgPt−1 at 0.9 V with a marginal decrease to 0.48 A mgPt−1 after 30,000 cycles, exceeding the US Department of Energy 2025 beginning-of-life and end-of-life mass activity targets, respectively. Theoretical studies show that the activity stems from a combination of ligand and strain effects between the intermetallic core and the Pt-rich shell, while the stability originates from the high vacancy formation energy of Mg in the alloy. © The Author(s) 2024. -
dc.language English -
dc.publisher Nature Publishing Group -
dc.title High vacancy formation energy boosts the stability of structurally ordered PtMg in hydrogen fuel cells -
dc.type Article -
dc.identifier.doi 10.1038/s41467-024-51280-2 -
dc.identifier.wosid 001292162100031 -
dc.identifier.scopusid 2-s2.0-85201400348 -
dc.identifier.bibliographicCitation Gyan-Barimah, Caleb. (2024-08). High vacancy formation energy boosts the stability of structurally ordered PtMg in hydrogen fuel cells. Nature Communications, 15(1). doi: 10.1038/s41467-024-51280-2 -
dc.description.isOpenAccess TRUE -
dc.subject.keywordPlus EVOLUTION -
dc.subject.keywordPlus OCTAHEDRA -
dc.subject.keywordPlus EFFICIENT OXYGEN REDUCTION -
dc.subject.keywordPlus INITIO MOLECULAR-DYNAMICS -
dc.subject.keywordPlus FEPT NANOPARTICLES -
dc.subject.keywordPlus ELECTROCATALYSTS -
dc.subject.keywordPlus CATALYSTS -
dc.subject.keywordPlus PLATINUM -
dc.subject.keywordPlus TRANSITION -
dc.subject.keywordPlus ALLOYS -
dc.citation.number 1 -
dc.citation.title Nature Communications -
dc.citation.volume 15 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Science & Technology - Other Topics -
dc.relation.journalWebOfScienceCategory Multidisciplinary Sciences -
dc.type.docType Article -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

유종성
Yu, Jong-Sung유종성

Department of Energy Science and Engineering

read more

Total Views & Downloads

???jsp.display-item.statistics.view???: , ???jsp.display-item.statistics.download???: