Detail View

High vacancy formation energy boosts the stability of structurally ordered PtMg in hydrogen fuel cells
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Gyan-Barimah, Caleb -
dc.contributor.author Mantha, Jagannath Sai Pavan -
dc.contributor.author Lee, Ha-Young -
dc.contributor.author Wei, Yi -
dc.contributor.author Shin, Cheol-Hwan -
dc.contributor.author Maulana, Muhammad Irfansyah -
dc.contributor.author Kim, Junki -
dc.contributor.author Henkelman, Graeme -
dc.contributor.author Yu, Jong-Sung -
dc.date.accessioned 2024-12-24T15:10:20Z -
dc.date.available 2024-12-24T15:10:20Z -
dc.date.created 2024-09-03 -
dc.date.issued 2024-08 -
dc.identifier.issn 2041-1723 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/57414 -
dc.description.abstract Alloys of platinum with alkaline earth metals promise to be active and highly stable for fuel cell applications, yet their synthesis in nanoparticles remains a challenge due to their high negative reduction potentials. Herein, we report a strategy that overcomes this challenge by preparing platinum-magnesium (PtMg) alloy nanoparticles in the solution phase. The PtMg nanoparticles exhibit a distinctive structure with a structurally ordered intermetallic core and a Pt-rich shell. The PtMg/C as a cathode catalyst in a hydrogen-oxygen fuel cell exhibits a mass activity of 0.50 A mgPt−1 at 0.9 V with a marginal decrease to 0.48 A mgPt−1 after 30,000 cycles, exceeding the US Department of Energy 2025 beginning-of-life and end-of-life mass activity targets, respectively. Theoretical studies show that the activity stems from a combination of ligand and strain effects between the intermetallic core and the Pt-rich shell, while the stability originates from the high vacancy formation energy of Mg in the alloy. © The Author(s) 2024. -
dc.language English -
dc.publisher Nature Publishing Group -
dc.title High vacancy formation energy boosts the stability of structurally ordered PtMg in hydrogen fuel cells -
dc.type Article -
dc.identifier.doi 10.1038/s41467-024-51280-2 -
dc.identifier.wosid 001292162100031 -
dc.identifier.scopusid 2-s2.0-85201400348 -
dc.identifier.bibliographicCitation Gyan-Barimah, Caleb. (2024-08). High vacancy formation energy boosts the stability of structurally ordered PtMg in hydrogen fuel cells. Nature Communications, 15(1). doi: 10.1038/s41467-024-51280-2 -
dc.description.isOpenAccess TRUE -
dc.subject.keywordPlus EVOLUTION -
dc.subject.keywordPlus OCTAHEDRA -
dc.subject.keywordPlus EFFICIENT OXYGEN REDUCTION -
dc.subject.keywordPlus INITIO MOLECULAR-DYNAMICS -
dc.subject.keywordPlus FEPT NANOPARTICLES -
dc.subject.keywordPlus ELECTROCATALYSTS -
dc.subject.keywordPlus CATALYSTS -
dc.subject.keywordPlus PLATINUM -
dc.subject.keywordPlus TRANSITION -
dc.subject.keywordPlus ALLOYS -
dc.citation.number 1 -
dc.citation.title Nature Communications -
dc.citation.volume 15 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Science & Technology - Other Topics -
dc.relation.journalWebOfScienceCategory Multidisciplinary Sciences -
dc.type.docType Article -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

유종성
Yu, Jong-Sung유종성

Department of Energy Science and Engineering

read more

Total Views & Downloads