Detail View

머신 러닝 기반 혈류 진동 데이터의 당뇨병 분류 특성 중요도 분석
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author 정한빈 -
dc.contributor.author 여채범 -
dc.contributor.author 장은실 -
dc.contributor.author 장연희 -
dc.contributor.author 송철 -
dc.date.accessioned 2025-01-23T10:10:19Z -
dc.date.available 2025-01-23T10:10:19Z -
dc.date.created 2023-12-21 -
dc.date.issued 2023-06-29 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/57716 -
dc.description.abstract In this paper, we demonstrated the diabetes classification potential of a machine learning algorithm for blood flow oscillation data. The blood flow oscillation data was extracted using wavelet transform by measuring the blood flow signal of rats with a Diffuse Speckle Contrast Analysis (DSCA) system. The test analysis of the blood flow reactivity demonstrated that additional experiments are not required to classify diabetes. In addition, feature importance analysis showed that blood flow oscillations of cardiac and respiratory activities play an important role in classifying diabetes. -
dc.language Korean -
dc.publisher 대한전자공학회 -
dc.relation.ispartof 2023년 대한전자공학회 하계학술대회 논문집 -
dc.title 머신 러닝 기반 혈류 진동 데이터의 당뇨병 분류 특성 중요도 분석 -
dc.title.alternative Machine Learning-based Diabetes Classification Feature Importance Analysis of Blood Flow Oscillation Data -
dc.type Conference Paper -
dc.identifier.bibliographicCitation 정한빈. (2023-06-29). 머신 러닝 기반 혈류 진동 데이터의 당뇨병 분류 특성 중요도 분석. 대한전자공학회 2023년도 하계종합학술대회, 1030–1031. -
dc.identifier.url https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE11522270 -
dc.citation.conferenceDate 2023-06-27 -
dc.citation.conferencePlace KO -
dc.citation.conferencePlace 제주 -
dc.citation.endPage 1031 -
dc.citation.startPage 1030 -
dc.citation.title 대한전자공학회 2023년도 하계종합학술대회 -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

송철
Song, Cheol송철

Department of Robotics and Mechatronics Engineering

read more

Total Views & Downloads