WEB OF SCIENCE
SCOPUS
Metadata Downloads
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | 정한빈 | - |
| dc.contributor.author | 여채범 | - |
| dc.contributor.author | 장은실 | - |
| dc.contributor.author | 장연희 | - |
| dc.contributor.author | 송철 | - |
| dc.date.accessioned | 2025-01-23T10:10:19Z | - |
| dc.date.available | 2025-01-23T10:10:19Z | - |
| dc.date.created | 2023-12-21 | - |
| dc.date.issued | 2023-06-29 | - |
| dc.identifier.uri | http://hdl.handle.net/20.500.11750/57716 | - |
| dc.description.abstract | In this paper, we demonstrated the diabetes classification potential of a machine learning algorithm for blood flow oscillation data. The blood flow oscillation data was extracted using wavelet transform by measuring the blood flow signal of rats with a Diffuse Speckle Contrast Analysis (DSCA) system. The test analysis of the blood flow reactivity demonstrated that additional experiments are not required to classify diabetes. In addition, feature importance analysis showed that blood flow oscillations of cardiac and respiratory activities play an important role in classifying diabetes. | - |
| dc.language | Korean | - |
| dc.publisher | 대한전자공학회 | - |
| dc.relation.ispartof | 2023년 대한전자공학회 하계학술대회 논문집 | - |
| dc.title | 머신 러닝 기반 혈류 진동 데이터의 당뇨병 분류 특성 중요도 분석 | - |
| dc.title.alternative | Machine Learning-based Diabetes Classification Feature Importance Analysis of Blood Flow Oscillation Data | - |
| dc.type | Conference Paper | - |
| dc.identifier.bibliographicCitation | 정한빈. (2023-06-29). 머신 러닝 기반 혈류 진동 데이터의 당뇨병 분류 특성 중요도 분석. 대한전자공학회 2023년도 하계종합학술대회, 1030–1031. | - |
| dc.identifier.url | https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE11522270 | - |
| dc.citation.conferenceDate | 2023-06-27 | - |
| dc.citation.conferencePlace | KO | - |
| dc.citation.conferencePlace | 제주 | - |
| dc.citation.endPage | 1031 | - |
| dc.citation.startPage | 1030 | - |
| dc.citation.title | 대한전자공학회 2023년도 하계종합학술대회 | - |