Detail View

Content-Adaptive Style Transfer: A Training-Free Approach with VQ Autoencoders
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Gim, Jongmin -
dc.contributor.author Park, Jihun -
dc.contributor.author Lee, Kyoungmin -
dc.contributor.author Im, Sunghoon -
dc.date.accessioned 2025-02-04T20:40:15Z -
dc.date.available 2025-02-04T20:40:15Z -
dc.date.created 2025-01-22 -
dc.date.issued 2024-12-10 -
dc.identifier.isbn 9789819609178 -
dc.identifier.issn 0302-9743 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/57876 -
dc.description.abstract We introduce Content-Adaptive Style Transfer (CAST), a novel training-free approach for arbitrary style transfer that enhances visual fidelity using vector quantized-based pretrained autoencoder. Our method systematically applies coherent stylization to corresponding content regions. It starts by capturing the global structure of images through vector quantization, then refines local details using our style-injected decoder. CAST consists of three main components: a content-consistent style injection module, which tailors stylization to unique image regions; an adaptive style refinement module, which fine-tunes stylization intensity; and a content refinement module, which ensures content integrity through interpolation and feature distribution maintenance. Experimental results indicate that CAST outperforms existing generative-based and traditional style transfer models in both quantitative and qualitative measures. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025. -
dc.language English -
dc.publisher Asian Federation of Computer Vision -
dc.relation.ispartof Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) -
dc.title Content-Adaptive Style Transfer: A Training-Free Approach with VQ Autoencoders -
dc.type Conference Paper -
dc.identifier.doi 10.1007/978-981-96-0917-8_11 -
dc.identifier.scopusid 2-s2.0-85212961206 -
dc.identifier.bibliographicCitation Gim, Jongmin. (2024-12-10). Content-Adaptive Style Transfer: A Training-Free Approach with VQ Autoencoders. Asian Conference on Computer Vision, 187–204. doi: 10.1007/978-981-96-0917-8_11 -
dc.identifier.url https://accv2024.org/wp-content/uploads/2024/12/program.pdf -
dc.citation.conferenceDate 2024-12-08 -
dc.citation.conferencePlace VN -
dc.citation.conferencePlace Hanoi -
dc.citation.endPage 204 -
dc.citation.startPage 187 -
dc.citation.title Asian Conference on Computer Vision -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

임성훈
Im, Sunghoon임성훈

Department of Electrical Engineering and Computer Science

read more

Total Views & Downloads