WEB OF SCIENCE
SCOPUS
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Gim, Jongmin | - |
| dc.contributor.author | Park, Jihun | - |
| dc.contributor.author | Lee, Kyoungmin | - |
| dc.contributor.author | Im, Sunghoon | - |
| dc.date.accessioned | 2025-02-04T20:40:15Z | - |
| dc.date.available | 2025-02-04T20:40:15Z | - |
| dc.date.created | 2025-01-22 | - |
| dc.date.issued | 2024-12-10 | - |
| dc.identifier.isbn | 9789819609178 | - |
| dc.identifier.issn | 0302-9743 | - |
| dc.identifier.uri | http://hdl.handle.net/20.500.11750/57876 | - |
| dc.description.abstract | We introduce Content-Adaptive Style Transfer (CAST), a novel training-free approach for arbitrary style transfer that enhances visual fidelity using vector quantized-based pretrained autoencoder. Our method systematically applies coherent stylization to corresponding content regions. It starts by capturing the global structure of images through vector quantization, then refines local details using our style-injected decoder. CAST consists of three main components: a content-consistent style injection module, which tailors stylization to unique image regions; an adaptive style refinement module, which fine-tunes stylization intensity; and a content refinement module, which ensures content integrity through interpolation and feature distribution maintenance. Experimental results indicate that CAST outperforms existing generative-based and traditional style transfer models in both quantitative and qualitative measures. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025. | - |
| dc.language | English | - |
| dc.publisher | Asian Federation of Computer Vision | - |
| dc.relation.ispartof | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | - |
| dc.title | Content-Adaptive Style Transfer: A Training-Free Approach with VQ Autoencoders | - |
| dc.type | Conference Paper | - |
| dc.identifier.doi | 10.1007/978-981-96-0917-8_11 | - |
| dc.identifier.scopusid | 2-s2.0-85212961206 | - |
| dc.identifier.bibliographicCitation | Gim, Jongmin. (2024-12-10). Content-Adaptive Style Transfer: A Training-Free Approach with VQ Autoencoders. Asian Conference on Computer Vision, 187–204. doi: 10.1007/978-981-96-0917-8_11 | - |
| dc.identifier.url | https://accv2024.org/wp-content/uploads/2024/12/program.pdf | - |
| dc.citation.conferenceDate | 2024-12-08 | - |
| dc.citation.conferencePlace | VN | - |
| dc.citation.conferencePlace | Hanoi | - |
| dc.citation.endPage | 204 | - |
| dc.citation.startPage | 187 | - |
| dc.citation.title | Asian Conference on Computer Vision | - |
Department of Electrical Engineering and Computer Science