Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Noh, Kyung Nim -
dc.contributor.author Park, Sung Il -
dc.contributor.author Qazi, Raza -
dc.contributor.author Zou, Zhanan -
dc.contributor.author Mickle, Aaron D. -
dc.contributor.author Grajales-Reyes, Jose G. -
dc.contributor.author Jang, Kyung In -
dc.contributor.author Gereau, Robert W. -
dc.contributor.author Xiao, Jianliang -
dc.contributor.author Rogers, John A. -
dc.contributor.author Jeong, Jae-Woong -
dc.date.accessioned 2018-02-16T10:45:07Z -
dc.date.available 2018-02-16T10:45:07Z -
dc.date.created 2018-02-09 -
dc.date.issued 2018-01 -
dc.identifier.issn 1613-6810 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/5805 -
dc.description.abstract Combination of optogenetics and pharmacology represents a unique approach to dissect neural circuitry with high specificity and versatility. However, conventional tools available to perform these experiments, such as optical fibers and metal cannula, are limited due to their tethered operation and lack of biomechanical compatibility. To address these issues, a miniaturized, battery-free, soft optofluidic system that can provide wireless drug delivery and optical stimulation for spatiotemporal control of the targeted neural circuit in freely behaving animals is reported. The device integrates microscale inorganic light-emitting diodes and microfluidic drug delivery systems with a tiny stretchable multichannel radiofrequency antenna, which not only eliminates the need for bulky batteries but also offers fully wireless, independent control of light and fluid delivery. This design enables a miniature (125 mm3), lightweight (220 mg), soft, and flexible platform, thus facilitating seamless implantation and operation in the body without causing disturbance of naturalistic behavior. The proof-of-principle experiments and analytical studies validate the feasibility and reliability of the fully implantable optofluidic systems for use in freely moving animals, demonstrating its potential for wireless in vivo pharmacology and optogenetics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim -
dc.language English -
dc.publisher WILEY-V C H VERLAG GMBH -
dc.title Miniaturized, Battery-Free Optofluidic Systems with Potential for Wireless Pharmacology and Optogenetics -
dc.type Article -
dc.identifier.doi 10.1002/smll.201702479 -
dc.identifier.wosid 000423401100003 -
dc.identifier.scopusid 2-s2.0-85040970185 -
dc.identifier.bibliographicCitation Small, v.14, no.4 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor battery-free -
dc.subject.keywordAuthor fully implantable -
dc.subject.keywordAuthor neural -
dc.subject.keywordAuthor optofluidic -
dc.subject.keywordAuthor wireless -
dc.subject.keywordPlus FLEXIBLE NEURAL PROBES -
dc.subject.keywordPlus IN-VIVO -
dc.subject.keywordPlus MICROFLUIDIC CHANNELS -
dc.subject.keywordPlus CIRCUITS -
dc.subject.keywordPlus OPTOELECTRONICS -
dc.subject.keywordPlus NEUROSCIENCE -
dc.subject.keywordPlus FABRICATION -
dc.subject.keywordPlus IMPLANTS -
dc.subject.keywordPlus PARYLENE -
dc.subject.keywordPlus DELIVERY -
dc.citation.number 4 -
dc.citation.title Small -
dc.citation.volume 14 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science; Physics -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter -
dc.type.docType Article -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Robotics and Mechatronics Engineering Bio-integrated Electronics Lab 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE