WEB OF SCIENCE
SCOPUS
Lithium superionic conductors are pivotal for enabling all-solid-state batteries, which aim to replace liquid electrolytes and enhance safety. Herein, we report the discovery of an unprecedented lithium superionic conductor, Li21Ge8P3S34, featuring a novel structural type and a new composition in the Li–Ge–P–S system. This material exhibits high lithium ionic conductivity of approximately 1.0 mS cm−1 at 303 K with a low activation energy of 0.20(1) eV. It's unique crystal structure was elucidated using three-dimensional electron diffraction (3D ED) and further refined through combined powder X-ray and neutron diffraction analyses. The structure consists of alternating two-dimensional slabs: one of corner-sharing GeS4 tetrahedra and the other of isolated PS4 tetrahedra, enabling efficient lithium-ion transport through a tetrahedrally interconnected network of 1D, 2D, and 3D diffusion pathways. This distinctive structural motif provides a novel design strategy for next-generation solid electrolytes, broadening the structural landscape of lithium superionic conductors. With further advancements in compositional tuning and interfacial engineering, Li21Ge8P3S34 could contribute to the development of high-performance all-solid-state batteries. © 2025 The Author(s). Angewandte Chemie International Edition published by Wiley-VCH GmbH.
더보기