Detail View

A Kirigami-Engineered "Skeletal Framework" Composite for Ultralow Hysteresis and Highly Stable Strain Sensors
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Pongampai, Satana -
dc.contributor.author Chaithaweep, Kanokwan -
dc.contributor.author Pakawanit, Phakkhananan -
dc.contributor.author Charoonsuk, Thitirat -
dc.contributor.author Bongkarn, Theerachai -
dc.contributor.author Maluangnont, Tosapol -
dc.contributor.author Vittayakorn, Wanwilai -
dc.contributor.author Hajra, Sugato -
dc.contributor.author Kim, Hoe Joon -
dc.contributor.author Vittayakorn, Naratip -
dc.date.accessioned 2026-01-12T21:40:12Z -
dc.date.available 2026-01-12T21:40:12Z -
dc.date.created 2025-11-27 -
dc.date.issued 2025-11 -
dc.identifier.uri https://scholar.dgist.ac.kr/handle/20.500.11750/59334 -
dc.description.abstract Wearable strain sensors are pivotal for next-generation human-machine interfaces, yet achieving high fidelity, robustness, and sustainability in a single platform remains a significant challenge. A primary obstacle is the inherent viscoelasticity of soft materials, which leads to signal drift and hysteresis. Here, we report a highly stretchable and ultrastable strain sensor fabricated through a synergistic integration of Kirigami-based structural engineering and nanocomposite material design. By introducing titanium dioxide nanotubes (TNTs) into a bacterial cellulose (BC) matrix, we create a composite with a unique internal "skeletal framework". This framework substantially reduces viscoelastic losses, resulting in an exceptionally low hysteresis of 0.6% and ensuring robust performance with 99.4% signal stability over >10 000 cycles. Concurrently, the Kirigami-patterned structure enhances stretchability to similar to 235% while the framework amplifies sensitivity 5.8-fold. The practical viability of this high-fidelity sensor is demonstrated through the precise and repeatable control of a robotic arm, where ultralow hysteresis proves more critical than raw sensitivity. The sensor's eco-friendly, water-based fabrication aligns high-fidelity sensing with sustainable processing, presenting a clear design paradigm for engineering reliable and eco-conscious wearable electronic devices. -
dc.language English -
dc.publisher American Chemical Society -
dc.title A Kirigami-Engineered "Skeletal Framework" Composite for Ultralow Hysteresis and Highly Stable Strain Sensors -
dc.type Article -
dc.identifier.doi 10.1021/acssuschemeng.5c08716 -
dc.identifier.wosid 001615906400001 -
dc.identifier.scopusid 2-s2.0-105022628563 -
dc.identifier.bibliographicCitation ACS Sustainable Chemistry & Engineering, v.13, no.46, pp.20179 - 20193 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor Strain sensor -
dc.subject.keywordAuthor Stretchability -
dc.subject.keywordAuthor Stability -
dc.subject.keywordAuthor Bacterial cellulose -
dc.subject.keywordAuthor Robotic arm control -
dc.subject.keywordPlus BACTERIAL CELLULOSE -
dc.subject.keywordPlus CULTURE -
dc.citation.endPage 20193 -
dc.citation.number 46 -
dc.citation.startPage 20179 -
dc.citation.title ACS Sustainable Chemistry & Engineering -
dc.citation.volume 13 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Engineering -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Green & Sustainable Science & Technology; Engineering, Chemical -
dc.type.docType Article -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

김회준
Kim, Hoe Joon김회준

Department of Robotics and Mechatronics Engineering

read more

Total Views & Downloads