Detail View

Development of Ultrasound-based Energy Harvester for Implantable Biomedical Electronics
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

Title
Development of Ultrasound-based Energy Harvester for Implantable Biomedical Electronics
DGIST Authors
Sungwoo KangJin Ho ChangKyoungtae Lee
Advisor
장진호
Co-Advisor(s)
Kyoungtae Lee
Issued Date
2026
Awarded Date
2026-02-01
Type
Thesis
Description
Implantable biomedical electronics, Ultrasound, Energy harvesting, Wireless power transfer
Abstract

This study presents the development of a high-efficiency, high-performance ultrasound-based piezoelectric energy harvester for wireless power charging of implantable biomedical electronics (IBEs). Conventional implantable devices are limited by short battery lifetimes, requiring periodic replacement surgeries. To address this limitation, the proposed harvester enables wireless charging through focused ultrasound transmission, significantly enhancing energy transfer efficiency. To establish the fundamental design principles, the relationship between receiver size, acoustic field alignment, and power output was analyzed through KLM modeling and finite element simulations. It was found that maximizing the receiver area and aligning it with the main lobe of the focused ultrasound beam are key factors for improving energy conversion. Based on these principles, an oblong-shaped ultrasound transmitter and receiver (OsUTR) were designed and fabricated. The OsUTR achieved an output power density of 246.93 mW/cm², which is approximately 6.6 times higher than that of previously reported devices, allowing a 30 mAh commercial battery to be fully charged within 1.33 hours. Even through a 50 mm thick porcine tissue, the system generated 38.4 Vp-p and 103.4 mAp-p, achieving full battery charging in 1.8 hours. To further increase efficiency, a sandwich-structured piezoelectric ultrasound harvester (SW-PUSH) was developed by stacking two piezoelectric layers to capture backward-propagating ultrasound energy that would otherwise be lost. The optimized SW-PUSH achieved a total output of 732.27 mW in water and 312.34 mW through 30 mm of porcine tissue, enabling a 60 mAh battery to be charged within 1.4 hours. Overall, the proposed harvesters effectively overcome the limitations of traditional single-layer designs and regulatory intensity constraints, providing stable, efficient, and high-power wireless charging for implantable devices. Future research will focus on improving transmitter–receiver alignment through acoustic holography, integrating power management and wireless communication circuits into a single System-on-Chip (SoC), and employing biocompatible, lead-free materials for long-term safety. This work establishes a practical foundation for the realization of self-powered, long-lasting implantable biomedical systems. Keywords: Implantable biomedical electronics, Ultrasound, Energy harvesting, Wireless power transfer|본 연구에서는 인체 삽입형 의료전자기기(IBE)의 무선 전력 충전을 위한 고효율·고성능 초음파 기반 압전 하베스터를 개발하였다. 기존의 삽입형 의료기기는 배터리 수명이 짧아 주기적인 교체 수술이 필요하다는 한계가 있다. 이를 해결하기 위해 본 연구에서는 초음파를 이용한 무선 전력 전송 방식을 적용하여, 집속 초음파를 통해 에너지 전달 효율을 크게 향상시켰다. 수신기 크기, 음장 정렬, 출력 특성 간의 관계를 KLM 모델링과 유한요소해석을 통해 분석한 결과, 수신기 면적을 최대화하고 송신 초음파의 주엽과 정렬하는 것이 에너지 변환 효율 향상에 핵심적임을 확인하였다. 이를 바탕으로 직사각형 형태의 초음파 송수신기를 설계·제작하였으며, 단위면적당 출력밀도 246.93 mW/cm²를 달성하여 기존 연구 대비 약 6.6배 향상된 성능을 보였다. 이 시스템은 30 mAh 상용 배터리를 1.33시간 만에 완충하였으며, 50 mm 두께의 돼지 조직을 통과한 실험에서도 38.4 Vp-p, 103.4 mAp-p의 출력을 확보하여 1.8시간 내 완충이 가능함을 입증하였다. 또한 기존 단층 구조의 에너지 손실 문제를 해결하기 위해 후방으로 전달되는 초음파 에너지를 회수할 수 있는 적층형 샌드위치 구조 하베스터(SW-PUSH)를 개발하였다. SW-PUSH는 물에서 732.27 mW, 30 mm 돼지 조직에서 312.34 mW의 출력을 보였으며, 60 mAh 배터리를 1.4시간 내 완충하였다. 제안된 하베스터는 기존 구조의 한계를 극복하고, 규제 강도 내에서 안정적이고 효율적인 무선 충전을 가능하게 한다. 향후 연구에서는 홀로그램 기반 정렬 기술, 전력 관리 및 무선 통신 회로의 시스템온칩 통합, 무연·생체 적합 소재 적용을 통해 장기적 안정성과 상용화 가능성을 확보할 것이다. 본 연구는 자가 구동형 장기 삽입 의료기기 구현을 위한 실질적 기반을 마련하였다.

더보기
Table Of Contents
Ⅰ. Introduction 1
1.1 Implantable Biomedical Electronics 1
1.2 Energy Harvesting for Implantable Biomedical Electronics 4
1.2.1 Self-powered Energy Harvesting for IBEs 5
1.2.1 External-powered Energy Harvesting for IBEs 8
1.3 Ultrasound-based Energy Harvester 10
1.3.1 Triboelectric Energy Harvester 10
1.3.2 Piezoelectric Energy Harvester 13
1.4 Objective of Research 15
1.5 Dissertation Organization 16
Reference 19

ⅠI. Key Conditions Contributing to High-performance Ultrasound-based Energy Harvesting 31
2.1 Introduction 31
2.2 Optimal conditions for P-receiver 33
2.2.1 Maximization of p-receiver Dimensions 33
2.2.2 Focus of transmitted ultrasound 36
2.2.3 Matching p-receiver dimensions to the main lobe of transmitted ultrasound 37
Reference 40

ⅠII. Oblong-shaped Piezoelectric Ultrasound Energy Harvester for High-performance Wireless Power Charging 45
3.1 Introduction 45
3.2 Materials and Methods 47
3.2.1 Fabrication of the proposed OsUTR 47
3.2.2 Electronics for rectification and battery charging 51
3.2.3 Experiment setup 52
3.3 Results and discussion 56
3.4 Conclusion 71
Reference 71

IV. Sandwich-structured Piezoelectric Ultrasound Harvester for Wireless Power Charging of Implantable Biomedical Electronics 77
4.1 Introduction 77
4.2 Design of high-efficient PUSH structure 79
4.3 Design and fabrication of the proposed SW-PUSH 85
4.4 Electrical characteristics of the fabricated SW-PUSH 92
4.5 Effect of two PUSH connections on energy harvesting efficiency 95
4.6 Effect of porcine tissue on the SW-PUSH output performance 100
4.7 Battery charging performance 102
4.8 Conclusion 104
Reference 105

V. Conclusion and Future Works 111
URI
https://scholar.dgist.ac.kr/handle/20.500.11750/59633
http://dgist.dcollection.net/common/orgView/200000945675
DOI
10.22677/THESIS.200000945675
Degree
Doctor
Department
Department of Electrical Engineering and Computer Science
Publisher
DGIST
Show Full Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Total Views & Downloads