Detail View

Toward Low-Overhead Fingerprint-Based Indoor Localization via Transfer Learning: Design, Implementation, and Evaluation
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Liu, Kai ko
dc.contributor.author Zhang, Hao ko
dc.contributor.author Ng, Joseph Kee-Yin ko
dc.contributor.author Xia, Yusheng ko
dc.contributor.author Feng, Liang ko
dc.contributor.author Lee, Victor C. S. ko
dc.contributor.author Son, Sang Hyuk ko
dc.date.accessioned 2018-04-11T03:46:30Z -
dc.date.available 2018-04-11T03:46:30Z -
dc.date.created 2018-03-29 -
dc.date.issued 2018-03 -
dc.identifier.citation IEEE Transactions on Industrial Informatics, v.14, no.3, pp.898 - 908 -
dc.identifier.issn 1551-3203 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/6153 -
dc.description.abstract This work aims at proposing a transfer learning (TL)-based framework to enhance system scalability of fingerprint-based indoor localization by reducing offline training overhead without jeopardizing the localization accuracy. The basic principle is to reshape data distributions in the target domain based on the transferred knowledge from the source domains, so that those data belonging to the same cluster will be logically closer to each other, whereas others will be further apart from each other. Specifically, the TL-based framework consists of two parts, metric learning and metric transfer, which are used to learn the distance metrics from source domains and identify the most suitable metric for the target domain, respectively. Furthermore, this work implements a prototype of the fingerprint-based indoor localization system with the proposed TL-based framework embedded. Finally, extensive real-world experiments are conducted to demonstrate the effectiveness and the generality of the TL-based framework. © 2005-2012 IEEE. -
dc.language English -
dc.publisher IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC -
dc.subject Signal Strength -
dc.subject Location -
dc.subject System -
dc.title Toward Low-Overhead Fingerprint-Based Indoor Localization via Transfer Learning: Design, Implementation, and Evaluation -
dc.type Article -
dc.identifier.doi 10.1109/TII.2017.2750240 -
dc.identifier.wosid 000426700600008 -
dc.identifier.scopusid 2-s2.0-85043290726 -
dc.type.local Article(Overseas) -
dc.type.rims ART -
dc.identifier.bibliographicCitation Liu, Kai. (2018-03). Toward Low-Overhead Fingerprint-Based Indoor Localization via Transfer Learning: Design, Implementation, and Evaluation. doi: 10.1109/TII.2017.2750240 -
dc.description.journalClass 1 -
dc.contributor.nonIdAuthor Liu, Kai -
dc.contributor.nonIdAuthor Zhang, Hao -
dc.contributor.nonIdAuthor Ng, Joseph Kee-Yin -
dc.contributor.nonIdAuthor Xia, Yusheng -
dc.contributor.nonIdAuthor Feng, Liang -
dc.contributor.nonIdAuthor Lee, Victor C. S. -
dc.identifier.citationVolume 14 -
dc.identifier.citationNumber 3 -
dc.identifier.citationStartPage 898 -
dc.identifier.citationEndPage 908 -
dc.identifier.citationTitle IEEE Transactions on Industrial Informatics -
dc.type.journalArticle Article -
dc.description.isOpenAccess N -
dc.contributor.affiliatedAuthor Son, Sang Hyuk -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

손상혁
Son, Sang Hyuk손상혁

Department of Information and Communication Engineering

read more

Total Views & Downloads