Full metadata record

DC Field Value Language
dc.contributor.authorFan, Lishako
dc.contributor.authorGao, Xiangko
dc.contributor.authorLee, Dongkyuko
dc.contributor.authorGuo, Er-Jiako
dc.contributor.authorLee, Shin Buhmko
dc.contributor.authorSnijders, Paul Cko
dc.contributor.authorWard, Thomas Z.ko
dc.contributor.authorEres, Gyulako
dc.contributor.authorChisholm, Mattheko
dc.contributor.authorLee, Ho Nyungko
dc.date.accessioned2018-06-01T11:05:34Z-
dc.date.available2018-06-01T11:05:34Z-
dc.date.created2018-03-29-
dc.date.created2018-03-29-
dc.date.issued2017-08-
dc.identifier.citationAdvanced Science, v.4, no.8-
dc.identifier.issn2198-3844-
dc.identifier.urihttp://hdl.handle.net/20.500.11750/6525-
dc.description.abstractThis study demonstrates that precise control of nonequilibrium growth conditions during pulsed laser deposition (PLD) can be exploited to produce single-crystalline anatase TiO2 nanobrush architectures with large surface areas terminated with high energy {001} facets. The data indicate that the key to nanobrush formation is controlling the atomic surface transport processes to balance defect aggregation and surface-smoothing processes. High-resolution scanning transmission electron microscopy data reveal that defect-mediated aggregation is the key to TiO2 nanobrush formation. The large concentration of defects present at the intersection of domain boundaries promotes aggregation of PLD growth species, resulting in the growth of the single-crystalline nanobrush architecture. This study proposes a model for the relationship between defect creation and growth mode in nonequilibrium environments, which enables application of this growth method to novel nanostructure design in a broad range of materials.-
dc.languageEnglish-
dc.publisherWiley-VCH Verlag-
dc.subjectSENSITIZED SOLAR-CELLS-
dc.subjectPULSED-LASER DEPOSITION-
dc.subjectONE-DIMENSIONAL NANOSTRUCTURES-
dc.subjectTRANSPARENT CONDUCTING OXIDE-
dc.subjectBALLISTIC AGGREGATION-
dc.subjectGROWTH-
dc.subjectRUTILE-
dc.subjectFILMS-
dc.subjectPERFORMANCE-
dc.subjectNANORODS-
dc.titleKinetically Controlled Fabrication of Single-Crystalline TiO2 Nanobrush Architectures with High Energy {001} Facets-
dc.typeArticle-
dc.identifier.doi10.1002/advs.201700045-
dc.identifier.wosid000408105000016-
dc.type.localArticle(Overseas)-
dc.type.rimsART-
dc.description.journalClass1-
dc.contributor.localauthorLee, Shin Buhm-
dc.contributor.nonIdAuthorFan, Lisha-
dc.contributor.nonIdAuthorGao, Xiang-
dc.contributor.nonIdAuthorLee, Dongkyu-
dc.contributor.nonIdAuthorGuo, Er-Jia-
dc.contributor.nonIdAuthorSnijders, Paul C-
dc.contributor.nonIdAuthorWard, Thomas Z.-
dc.contributor.nonIdAuthorEres, Gyula-
dc.contributor.nonIdAuthorChisholm, Matthe-
dc.contributor.nonIdAuthorLee, Ho Nyung-
dc.identifier.citationVolume4-
dc.identifier.citationNumber8-
dc.identifier.citationTitleAdvanced Science-
dc.type.journalArticleArticle-
dc.description.isOpenAccessY-


qrcode mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE