Cited 0 time in webofscience Cited 1 time in scopus

A Highly Active and Redox-Stable SrGdNi0.2Mn0.8O4±δ Anode with in Situ Exsolution of Nanocatalysts

Title
A Highly Active and Redox-Stable SrGdNi0.2Mn0.8O4±δ Anode with in Situ Exsolution of Nanocatalysts
Authors
Kim, Kyeong JoonRath, Manasa KumarKwak, Hun HoKim, Hyung JunHan, Jeong WooHong, Seung-TaeLee, Kang-Taek
DGIST Authors
Hong, Seung-TaeLee, Kang-Taek
Issue Date
2019-01
Citation
ACS Catalysis, 9(2), 1172-1182
Type
Article
Article Type
Article
Author Keyword
solid oxide fuel cells; layered perovskite; ceramic anode; exsolution; redox stable
Keyword
SOLID-OXIDE FUEL; LAYERED PEROVSKITE ANODE; HYDROGEN OXIDATION; CATHODE MATERIAL; NANOPARTICLES; TEMPERATURE; PERFORMANCE; METHANE; ALLOY; NI
ISSN
2155-5435
Abstract
Layered perovskite SrGdNixMn1-xO4±δ phases were evaluated as new ceramic anode materials for use in solid oxide fuel cells (SOFCs). Hydrogen temperature-programmed reduction (H2-TPR) analysis of the SrGdNixMn1-xO4±δ (x = 0.2, 0.5, and 0.8) materials revealed that significant exsolution of Ni nanoparticles occurred in SrGdNi0.2Mn0.8O4±δ (SGNM28) in H2 at over 650 °C. Consistently, the SGNM28 on the LSGM electrolyte showed low electrode polarization resistance (1.79 ω cm2) in H2 at 800 °C. Moreover, after 10 redox cycles at 750 °C, the electrode area specific resistance of the SGNM28 anode in H2 increased only 0.027 ω·cm2 per cycle (1.78% degradation rate), indicating excellent redox stability in both reducing and oxidizing atmospheres. An LSGM-electrolyte-supported SOFC employing an SGNM28-Gd-doped ceria anode yielded a maximum power density of 1.26 W cm-2 at 850 °C, which is the best performance among the SOFCs with Ruddlesden-Popper-based ceramic anodes to date. After performance measurement, we observed that metallic Ni nanoparticles (∼ 25 nm) were grown in situ and homogeneously distributed on the SGNM28 anode surface. These exsolved nanocatalysts are believed to significantly enhance the hydrogen oxidation activity of the SGNM28 material. These results demonstrate that the SGNM28 material is promising as a high catalytically active and redox-stable anode for SOFCs. © 2019 American Chemical Society.
URI
http://hdl.handle.net/20.500.11750/9567
DOI
10.1021/acscatal.8b03669
Publisher
American Chemical Society
Related Researcher
  • Author Hong, Seung-Tae Discovery Lab(Batteries & Materials Discovery Laboratory)
  • Research Interests Magnesium, sodium and lithium ion rechargeable batteries; New inorganic materials discovery; Solid state chemistry; Crystallography; Mg, Na, Li 이온 이차전지; 신 무기재료 합성; 고체화학; 결정화학
Files:
There are no files associated with this item.
Collection:
Department of Energy Science and EngineeringAECSL(Advanced Energy Conversion and Storage Lab)1. Journal Articles
Department of Energy Science and EngineeringAECSL(Advanced Energy Conversion and Storage Lab)1. Journal Articles


qrcode mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE