Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Kim, Kyeong Joon -
dc.contributor.author Rath, Manasa Kumar -
dc.contributor.author Kwak, Hun Ho -
dc.contributor.author Kim, Hyung Jun -
dc.contributor.author Han, Jeong Woo -
dc.contributor.author Hong, Seung-Tae -
dc.contributor.author Lee, Kang-Taek -
dc.date.accessioned 2019-03-06T11:24:28Z -
dc.date.available 2019-03-06T11:24:28Z -
dc.date.created 2019-01-22 -
dc.date.issued 2019-02 -
dc.identifier.issn 2155-5435 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/9567 -
dc.description.abstract Layered perovskite SrGdNixMn1-xO4±δ phases were evaluated as new ceramic anode materials for use in solid oxide fuel cells (SOFCs). Hydrogen temperature-programmed reduction (H2-TPR) analysis of the SrGdNixMn1-xO4±δ (x = 0.2, 0.5, and 0.8) materials revealed that significant exsolution of Ni nanoparticles occurred in SrGdNi0.2Mn0.8O4±δ (SGNM28) in H2 at over 650 °C. Consistently, the SGNM28 on the LSGM electrolyte showed low electrode polarization resistance (1.79 ω cm2) in H2 at 800 °C. Moreover, after 10 redox cycles at 750 °C, the electrode area specific resistance of the SGNM28 anode in H2 increased only 0.027 ω·cm2 per cycle (1.78% degradation rate), indicating excellent redox stability in both reducing and oxidizing atmospheres. An LSGM-electrolyte-supported SOFC employing an SGNM28-Gd-doped ceria anode yielded a maximum power density of 1.26 W cm-2 at 850 °C, which is the best performance among the SOFCs with Ruddlesden-Popper-based ceramic anodes to date. After performance measurement, we observed that metallic Ni nanoparticles (∼ 25 nm) were grown in situ and homogeneously distributed on the SGNM28 anode surface. These exsolved nanocatalysts are believed to significantly enhance the hydrogen oxidation activity of the SGNM28 material. These results demonstrate that the SGNM28 material is promising as a high catalytically active and redox-stable anode for SOFCs. © 2019 American Chemical Society. -
dc.language English -
dc.publisher American Chemical Society -
dc.title A Highly Active and Redox-Stable SrGdNi0.2Mn0.8O4±δ Anode with in Situ Exsolution of Nanocatalysts -
dc.type Article -
dc.identifier.doi 10.1021/acscatal.8b03669 -
dc.identifier.scopusid 2-s2.0-85060053109 -
dc.identifier.bibliographicCitation ACS Catalysis, v.9, no.2, pp.1172 - 1182 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor solid oxide fuel cells -
dc.subject.keywordAuthor layered perovskite -
dc.subject.keywordAuthor ceramic anode -
dc.subject.keywordAuthor exsolution -
dc.subject.keywordAuthor redox stable -
dc.subject.keywordPlus SOLID-OXIDE FUEL -
dc.subject.keywordPlus LAYERED PEROVSKITE ANODE -
dc.subject.keywordPlus HYDROGEN OXIDATION -
dc.subject.keywordPlus CATHODE MATERIAL -
dc.subject.keywordPlus NANOPARTICLES -
dc.subject.keywordPlus TEMPERATURE -
dc.subject.keywordPlus PERFORMANCE -
dc.subject.keywordPlus METHANE -
dc.subject.keywordPlus ALLOY -
dc.subject.keywordPlus NI -
dc.citation.endPage 1182 -
dc.citation.number 2 -
dc.citation.startPage 1172 -
dc.citation.title ACS Catalysis -
dc.citation.volume 9 -

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE