Cited 0 time in webofscience Cited 0 time in scopus

Physical Layer Security Enhancing Methods in Wired and Wireless Communication Environments

Title
Physical Layer Security Enhancing Methods in Wired and Wireless Communication Environments
Authors
Sungmin Han
DGIST Authors
Han, Sungmin; Choi, HongsooChoi, Ji-woong
Advisor(s)
최지웅
Co-Advisor(s)
Hongsoo Choi
Issue Date
2019
Available Date
2019-10-03
Degree Date
2019-02
Type
Thesis
Abstract
최근 많은 물리 시스템은 통신 시스템에 의해 제어되고 있다. 물리 시스템의 오동작은 인명피해와 같은 물리적 피해를 일으킬 수 있으므로, 그 어느 때보다도 고신뢰성 통신 시스템이 요구되고 있다. 악의적 공격에 대한 통신 시스템의 신뢰성을 높이기 위해 기존에는 암호화 알고리즘을 주로 사용해 왔다. 하지만 기존 암호화 알고리즘의 경우 부채널 공격과 같은 암호화 시스템의 물리적 취약점을 이용하는 공격에 매우 취약하다. 암호화 알고리즘의 한계점을 보완하기 위해 정보 이론 관점에서의 물리 계층 보안 연구가 유무선 통신 환경에서 진행되고 있다. 기존의 물리 계층 보안 연구는 주로 셀룰러 시스템과 같은 일반적 무선환경에서 이루어지고 있어, 다양한 통신 시스템에 대한 적용은 미미한 편이다. 본 논문에서는 다양한 유무선 환경에서의 물리 계층 보안 향상 기법에 대해서 다룬다. 유선 및 무선 환경 시스템을 위한 항재밍 및 항스푸핑 기법이 제안되었고, 제안된 기법의 성능을 시뮬레이션 및 실험 결과를 통해 검증하였다. 또한 상관 채널 및 자기 유도 결합 환경에서의 보안 채널 용량을 분석하여, 시스템의 보안 채널 용량 향상을 위한 최적 파라미터 설계 방법을 제시하였다. 본 논문에서 제시하는 방법은 물리 계층의 변경만으로 구현 가능하므로, 기존 상위 계층에서의 암호화 알고리즘과 함께 사용하여 시스템 보안 향상에 이용될 수 있다.|Many physical systeMaster are now controlled by communication systeMaster. Since abnormal operation of a physical system might lead to physical accidents, including the loss of human life, high reliability of the communication system is required. Traditionally, cryptography algorithMaster have been used to improve the reliability of communication systeMaster against malicious attacks. However, due to the physical limitations of cryptography systeMaster, cryptography algorithm based security systeMaster are vulnerable to side channel attacks. To mitigate the limitations of cryptography algorithMaster, information theoretic security is studied in the physical layer for wired and wireless communication systeMaster. However, previous studies on physical layer information theoretic security have mainly focused on typical wireless cellular systeMaster, although there are many types of communication systeMaster. In this paper, we investigate methods for enhancing security in physical layer for various communication environments. We propose anti-jamming and anti-spoofing methods for wireless and wired communication systeMaster, respectively. Performance of the proposed schemes are evaluated by simulation and experiment results. In addition, secure capacity of correlated and magnetic inductive coupling channels is analyzed, respectively. We obtain some intuition from secure capacity analysis results, and we derive optimal system parameter or design guideline for system security. The results of this paper can be implemented with only modification of the physical layer. Therefore, the proposed schemes are fully compatible with conventional higher layer security protocol.
Table Of Contents
I. Introduction 1 II. Energy efficient DPSK modulation and demodulation using symbol repetition and interleaving 5 1. Introduction 6 2. Decoding criteria of repeated DPSK symbol 9 2.1. Reconstruction from randomly interleaved pre-symbols (Type 1, \lambda=I) 12 2.2. Reconstruction from non-interleavered pre-symbols (Type 2, \lambda \neq I) 13 3. Performance analysis 14 3.1. Error Rate of Type 1 Scenario 18 3.2. Error Rate of Type 2 Scenario 20 4. Simulation and experimental results 22 5. Conclusion 28 6. Appendix A -Derivation of noise distribution shape 31 7. Appendix B -Probability of sum of Gaussian random variable complex product 33 III. CNN-Based Adaptive Source Node Identifier for Controller Area Networks 34 1. Introduction 34 2. Physical layer fundamentals of CAN bus 36 3. System model 37 3.1. CNN-based Classifier 37 3.2. Effect of Identification Error on Network Performance 39 4. Performance Evaluation 40 5. Conclusion 45 IV. Secure capacity outage probability analysis on correlated fading channel 46 1. Introduction 46 2. System model 48 3. Analysis and results 51 4. Conclusion 60 V. Secure capacity analysis for MIC-based SWIPT system 67 1. Introduction 67 2. System model and preliminaries 70 2.1. Introduction to MIC 70 2.2. System model 71 3. Secure capacity analysis and verification 73 3.1. Full knowledge of angular positions 74 3.2. Limited knowledge of angular positions 84 4. Conclusion 91 VI. Conclusions and future work 98 References 100
URI
http://dgist.dcollection.net/common/orgView/200000171468
http://hdl.handle.net/20.500.11750/10693
DOI
10.22706/thesis.200000171468
Degree
DOCTOR
Department
Information and Communication Engineering
University
DGIST
Related Researcher
  • Author Choi, Hongsoo Bio-Micro Robotics Lab
  • Research Interests Micro/Nano robot; Neural prostheses; MEMS; BMI; MEMS/NEMS; BioMEMS; MEMS 초음파 트랜스듀스; 인공와우
Files:
There are no files associated with this item.
Collection:
Department of Information and Communication EngineeringThesesPh.D.


qrcode mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE