Communities & Collections
Researchers & Labs
Titles
DGIST
LIBRARY
DGIST R&D
Detail View
Department of Robotics and Mechatronics Engineering
Theses
Master
Enhancement of Perivascular Spaces using 3D Convolutional Neural Network
Euijin Jung
Department of Robotics and Mechatronics Engineering
Theses
Master
Citations
WEB OF SCIENCE
Citations
SCOPUS
Metadata Downloads
XML
Excel
Title
Enhancement of Perivascular Spaces using 3D Convolutional Neural Network
Alternative Title
3차원 합성곱 신경망을 이용한 혈관영상 화질 향상
DGIST Authors
Park, Sanghyun
;
Jung, Euijin
;
Kim, Jaeil
Advisor
박상현
Co-Advisor(s)
Jaeil Kim
Issued Date
2019
Awarded Date
2019-02
Citation
Euijin Jung. (2019). Enhancement of Perivascular Spaces using 3D Convolutional Neural Network. doi: 10.22677/thesis.200000171501
Type
Thesis
Table Of Contents
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
I. INTRODUCTION 1
II. Related Works 3
1 Spatial Domain Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Transform Domain Approaches . . . . . . . . . . . . . . . . . . . . . . . 3
3 Learning Based Approaches . . . . . . . . . . . . . . . . . . . . . . . . . 4
4 Medical Image Enhancement . . . . . . . . . . . . . . . . . . . . . . . . . 4
III. METHODS 6
1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 SRCNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3 VDSR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4 Dense Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5 Densely Connected Dense Network . . . . . . . . . . . . . . . . . . . . . 9
IV. RESULTS 10
1 Data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2 Evaluation Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3 Quantitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4 Qualitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5 Discussion for comparison networks . . . . . . . . . . . . . . . . . . . . . 15
6 Discussion for network depth . . . . . . . . . . . . . . . . . . . . . . . . . 18
V. CONCLUSION 20
References 21
URI
http://dgist.dcollection.net/common/orgView/200000171501
http://hdl.handle.net/20.500.11750/10757
DOI
10.22677/thesis.200000171501
Degree
MASTER
Department
Robotics Engineering
Publisher
DGIST
Show Full Item Record
File Downloads
There are no files associated with this item.
공유
공유하기
Total Views & Downloads