Cited time in webofscience Cited time in scopus

Low-Temperature Atomic Layer Deposition of Highly Conformal Tin Nitride Thin Films for Energy Storage Devices

Title
Low-Temperature Atomic Layer Deposition of Highly Conformal Tin Nitride Thin Films for Energy Storage Devices
Author(s)
Ansari, Mohd ZahidNandi, Dip K.Janicek, PetrAnsari, Sajid AliRamesh, RahulCheon, TaehoonShong, BonggeunKim, Soo-Hyun
Issued Date
2019-11
Citation
ACS Applied Materials & Interfaces, v.11, no.46, pp.43608 - 43621
Type
Article
Author Keywords
TDMASnNH3density functional theoryenergy storageatomic layer depositionSnNxlow temperature
Keywords
CHEMICAL-VAPOR-DEPOSITIONNEGATIVE ELECTRODE MATERIALLI-IONREACTION-MECHANISMCOPPER NITRIDELITHIUMNITROGENOXIDESNO2AMMONOLYSIS
ISSN
1944-8244
Abstract
We present an atomic layer deposition (ALD) process for the synthesis of tin nitride (SnNx) thin films using tetrakis(dimethylamino) tin (TDMASn, Sn(NMe2)4) and ammonia (NH3) as the precursors at low deposition temperatures (70-200 °C). This newly developed ALD scheme exhibits ideal ALD features such as self-limited film growth at 150 °C. The growth per cycle (GPC) was found to be ∼0.21 nm/cycle at 70 °C, which decreased with increasing deposition temperature. Interestingly, when the deposition temperature was between 125 and 180 °C, the GPC remained almost constant at ∼0.10 nm/cycle, which suggests an ALD temperature window, whereas upon further increasing the temperature to 200 °C, the GPC considerably decreased to ∼0.04 nm/cycle. Thermodynamic analysis via density functional theory calculations showed that the self-saturation of TDMASn would occur on an NH2-terminated surface. Moreover, it also suggests that the condensation of a molecular precursor and the desorption of surface *NH2 moieties would occur at lower and higher temperatures outside the ALD window, respectively. Thanks to the characteristics of ALD, this process could be used to conformally and uniformly deposit SnNx onto an ultranarrow dual-trench Si structure (minimum width: 15 nm; aspect ratio: ∼6.3) with ∼100% step coverage. Several analysis tools such as transmission electron microscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy, Rutherford backscattering spectrometry, and secondary-ion mass spectrometry were used to characterize the film properties under different deposition conditions. XRD showed that a hexagonal SnN phase was obtained at a relatively low deposition temperature (100-150 °C), whereas cubic Sn3N4 was formed at a higher deposition temperature (175-200 °C). The stoichiometry of these thermally grown ALD-SnNx films (Sn-to-N ratio) deposited at 150 °C was determined to be ∼1:0.93 with negligible impurities. The optoelectronic properties of the SnNx films, such as the band gap, wavelength-dependent refractive index, extinction coefficient, carrier concentration, and mobility, were further evaluated via spectroscopic ellipsometry analysis. Finally, ALD-SnNx-coated Ni-foam (NF) and hollow carbon nanofibers were successfully used as free-standing electrodes in electrochemical supercapacitors and in Li-ion batteries, which showed a higher charge-storage time (about eight times greater than that of the uncoated NF) and a specific capacity of ∼520 mAh/g after 100 cycles at 0.1 A/g, respectively. This enhanced performance might be due to the uniform coverage of these substrates by ALD-SnNx, which ensures good electric contact and mechanical stability during electrochemical reactions. Copyright © 2019 American Chemical Society.
URI
http://hdl.handle.net/20.500.11750/11421
DOI
10.1021/acsami.9b15790
Publisher
American Chemical Society
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Center for Core Research Facilities 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE