Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.advisor 윤동원 -
dc.contributor.author Jeongseok Kim -
dc.date.accessioned 2020-06-22T16:00:41Z -
dc.date.available 2020-06-22T16:00:41Z -
dc.date.issued 2020 -
dc.identifier.uri http://dgist.dcollection.net/common/orgView/200000285779 en_US
dc.identifier.uri http://hdl.handle.net/20.500.11750/11960 -
dc.description 2 paired CFH, underactuated wire mechanism, 충격 흡수, 인간형 로봇 핸드 -
dc.description.abstract Robotic hands which is made up of rigid links and pin joints, have been studied a lot because they can be precisely controlled to implement complex movements, and because of their great mechanical strength, they can hold high payloads. However, the rigid body-based robotic hand is vulnerable to impacts because it cannot absorb the impact in an unspecific direction. To solve this problem, researches have also been actively con-ducted to create robotic hands with flexible materials. In the case of soft robots, the ability to absorb impact is excellent thanks to the compliance of the material itself, but the disadvantage is that they cannot grasp heavy objects because they are limited to make high grasping forces.
In this paper, an anthropomorphic robotic hand with the advantages of rigid-based robot hand and soft robot hand simultaneously, was produced using a new structure called curved 2 paired CFH. Prior to the man-ufacture of the Curved 2 paired CFH, the stiffness analysis was carried out for the conventional CFH first. If a robotic hand is manufactured using 1 paired CFH of a conventionally shaped shape, the out of plane compliance causes the fingers to twist and prevent proper grasping motion. To solve this problem, we designed 2 paired CFH, which is made by two symmetrically shaped 1 paired CFH, and checked how much stiffness increase is present compared to 1 paired CFH, theorecically, and validated it by experiments. For practical application of the 2 paired CFH with enhanced stiffness to the robotic hand, the shape was modified to produce the curved 2 paired CFH. When we use the CFH as robotic hand’s joints, the load bearing capacity is drastically decreased due to the decrease of supporting stiffness according to the finger bending. In addition, the supporting stiffness is so large that if the robot is impacted, there is a risk of permanent deformation in the joint. However, using the newly proposed curved 2 paired CFH, the supporting stiffness increases as the fingers are bent, allowing heavy loads to be supported and external shocks are absorbable when the robot is not operating.
In this paper, an underactuated wire mechanism, suitable for the robotic hand was used to maximize the advantages of a CFH. The manufactured robotic hand was able to grasp objects of various shapes using curved 2 paired CFH and underactuated wire mechanism, and was able to hold a cylindrical object of up to 4.04kg when it supplied power close to its rated voltage and current. In addition, we also validated ability to absorb impacts through an experiment.
-
dc.description.statementofresponsibility prohibition -
dc.description.tableofcontents Ⅰ. INTRODUCTION 1
II. Stiffness analysis of Crossed Flexural Hinge 4
III. Design of a robotic hand with 2 paired CFH 14
3.1 Overall Configuration of robotic hand 14
3.2 Design of curved 2 paired CFH and phalanges 15
3.2.1 Curved 2 paired CFH and supporting stiffness enhancement as bending angle increases 15
3.2.2 Supporting stiffness comparison between curved 1 paired CFH and the curved 2 paired CFH 19
3.3 Design of three fingers and underactuated mechanism 21
3.4 Biologically inspired design of thumb 23
IV. Performance Verification 26
4.1 Grasping test 26
V. Conclusion 29
References 31
-
dc.format.extent 41 -
dc.language eng -
dc.publisher DGIST -
dc.title Wire driven Robotic hand with two-paired Crossed flexural hinge -
dc.type Thesis -
dc.identifier.doi 10.22677/Theses.200000285779 -
dc.description.alternativeAbstract 강체 링크와 핀 조인트로 구성된 로봇 핸드는, 정밀한 제어가 가능하여 복잡한 움직임을 구현할 수 있다는 점, 그리고 기계적 강성이 매우 커서 가반하중이 크다는 큰 장점이 있어 많은 연구가 이루어져 왔다. 하지만, 강체 기반의 로봇 핸드는 불특정한 방향에서 충격이 가해 졌을 때 이를 흡수할 수 없어서 로봇이 파손될 위험성이 있다. 이러한 문제점을 해결하기 위해 유연한 재질로 로봇 손을 제작하는 연구또한 활발히 이루어져 왔다. 소프트 로봇의 경우 소재 자체의 compliance 덕분에 충격을 흡수하는 기능이 뛰어나지만, 큰 힘을 낼 수 없어 무거운 하중의 물체를 잡을 수 없다는 단점이 있다.
본 논문에서는 강체기반 로봇 핸드와 소프트 로봇 핸드의 장점을 동시에 가지는 인간형 로봇 핸드를 curved 2 paired CFH라는 새로운 구조를 사용하여 제작하였다. Curved 2 paired CFH를 제작하기에 앞서, conventional CFH에 대해 먼저 강성 분석을 진행하였다. Conventional한 형상의 1 paired CFH를 이용하여 로봇 핸드를 제작하게 되면, out of plane compliance로 인해 물체를 잡을 때 손가락이 비틀어져서 제대로된 잡기 동작이 불가능하다. 이를 해결하기 위해 서로 대칭인 두개의 1 paired CFH를 붙인 2 paired CFH 구조를 구성하고, 1 paired CFH에 비해 어느 정도의 강성 증가가 있는지 이론적으로 확인하고, 실험적으로 증명하였다. 이렇게 우수한 강성을 가지는 2 paired CFH를 실질적으로 로봇 핸드에 적용하기 위해 형상을 변경하여 curved 2 paired CFH를 제작하였다. Conventional한 형상의 CFH를 로봇 핸드의 조인트로서 사용하게 되면 손가락이 굽어짐에 따라 supporting stiffness가 급격하게 감소하여 하중지지능력이 떨어지게 된다. 또한, supporting stiffness가 매우 커서, 로봇에 충격이 가해지게 되면, 조인트에 영구변형이 일어날 위험성이 있다. 하지만, 새롭게 제안된 curved 2 paired CFH를 이용하게 되면 손가락이 굽어짐에 따라 supporting stiffness가 증가하여 무거운 하중도 지지가능하고, 로봇이 구동하지 않을 때는 외부 충격을 어느정도 흡수할 수 있다.
본 논문에서는 CFH로 구성한 로봇 핸드의 장점을 극대화 하기 위해서 하드웨어에 알맞은 underactuated wire mechanism을 사용하였다. 제작된 로봇 핸드는 Curved 2 paired CFH와 underactuated wire mechanism을 이용하여 여러가지 형상의 물체를 잡을 수 있었고, 정격 전압과 전류에 가까운 전원을 공급했을 때 최대 4.04kg의 원기둥형 물체를 잡을 수 있었다. 또한, 여러방향에서 충격을 가하는 실험에서도 로봇의 파손 없이 충격을 잘 흡수하는 것을 확인하였다.
-
dc.description.degree Master -
dc.contributor.department Robotics Engineering -
dc.contributor.coadvisor Jongwon Park -
dc.date.awarded 2020-02 -
dc.publisher.location Daegu -
dc.description.database dCollection -
dc.citation XT.RM 김74 202002 -
dc.date.accepted 2020-01-20 -
dc.contributor.alternativeDepartment 로봇공학전공 -
dc.embargo.liftdate 2024-12-25 -
dc.contributor.affiliatedAuthor Kim, Jeongseok -
dc.contributor.affiliatedAuthor Park, Jongwon -
dc.contributor.affiliatedAuthor Yun, Dongwon -
dc.contributor.alternativeName 김정석 -
dc.contributor.alternativeName Dongwon Yun -
dc.contributor.alternativeName 박종원 -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Robotics and Mechatronics Engineering Theses Master

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE