Detail View

Doppler-Spectrum Feature-Based Human-Vehicle Classification Scheme Using Machine Learning for an FMCW Radar Sensor
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Hyun, Eugin -
dc.contributor.author Jin, YoungSeok -
dc.date.accessioned 2020-07-07T10:42:13Z -
dc.date.available 2020-07-07T10:42:13Z -
dc.date.created 2020-04-23 -
dc.date.issued 2020-04 -
dc.identifier.issn 1424-8220 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/12044 -
dc.description.abstract In this paper, we propose a Doppler-spectrum feature-based human–vehicle classification scheme for an FMCW (frequency-modulated continuous wave) radar sensor. We introduce three novel features referred to as the scattering point count, scattering point difference, and magnitude difference rate features based on the characteristics of the Doppler spectrum in two successive frames. We also use an SVM (support vector machine) and BDT (binary decision tree) for training and validation of the three aforementioned features. We measured the signals using a 24-GHz FMCW radar front-end module and a real-time data acquisition module and extracted three features from a walking human and a moving vehicle in the field. We then repeatedly measured the classification decision rate of the proposed algorithm using the SVM and BDT, finding that the average performance exceeded 99% and 96% for the walking human and the moving vehicle, respectively. © 2020 by the authors. Licensee MDPI, Basel, Switzerland. -
dc.language English -
dc.publisher MDPI AG -
dc.title Doppler-Spectrum Feature-Based Human-Vehicle Classification Scheme Using Machine Learning for an FMCW Radar Sensor -
dc.type Article -
dc.identifier.doi 10.3390/s20072001 -
dc.identifier.wosid 000537110500197 -
dc.identifier.scopusid 2-s2.0-85083071780 -
dc.identifier.bibliographicCitation Hyun, Eugin. (2020-04). Doppler-Spectrum Feature-Based Human-Vehicle Classification Scheme Using Machine Learning for an FMCW Radar Sensor. Sensors, 20(7). doi: 10.3390/s20072001 -
dc.description.isOpenAccess TRUE -
dc.subject.keywordAuthor human detection -
dc.subject.keywordAuthor FMCW radar -
dc.subject.keywordAuthor range-Doppler processing -
dc.subject.keywordAuthor radar machine learning -
dc.subject.keywordPlus Classification decision -
dc.subject.keywordPlus FMCW radar sensors -
dc.subject.keywordPlus Frequency-modulated continuous waves -
dc.subject.keywordPlus Front end modules -
dc.subject.keywordPlus Real time data acquisition -
dc.subject.keywordPlus SVM(support vector machine) -
dc.subject.keywordPlus Vehicle classification -
dc.subject.keywordPlus Radar measurement -
dc.subject.keywordPlus Binary trees -
dc.subject.keywordPlus Continuous wave radar -
dc.subject.keywordPlus Data acquisition -
dc.subject.keywordPlus Decision trees -
dc.subject.keywordPlus Doppler effect -
dc.subject.keywordPlus Frequency modulation -
dc.subject.keywordPlus Radar equipment -
dc.subject.keywordPlus Spectrum analysis -
dc.subject.keywordPlus Support vector machines -
dc.subject.keywordPlus Vehicles -
dc.subject.keywordPlus Binary decision trees -
dc.citation.number 7 -
dc.citation.title Sensors -
dc.citation.volume 20 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Chemistry; Engineering; Instruments & Instrumentation -
dc.relation.journalWebOfScienceCategory Chemistry, Analytical; Engineering, Electrical & Electronic; Instruments & Instrumentation -
dc.type.docType Article -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

현유진
Hyun, Eugin현유진

Division of Mobility Technology

read more

Total Views & Downloads