Cited 0 time in webofscience Cited 0 time in scopus

The study of E-nose based on metal oxide semiconductor

Title
The study of E-nose based on metal oxide semiconductor
Authors
Jang, Hyon Woo
DGIST Authors
Jang, Hyon Woo; Jang, Jae EunKwon, Hyuk Jun
Advisor(s)
장재은
Co-Advisor(s)
Kwon, Hyuk Jun
Issue Date
2020
Available Date
2020-08-06
Degree Date
2020/08
Type
Thesis
Description
E-nose, ZnO nanowire, metal oxide semiconductor
Abstract
Electronic nose (E-nose) is an artificial olfactory system which imitating olfactory system of living or-ganisms like human or insects, has been gradually studied due to its large potentiality on various areas like food industry or diagnosis of disease. Especially, E-nose based on metal oxide semiconductor is widely stud-ied due to its advantages like easy fabrication, low cost and high sensitivity on many harmful, environmen-tal, explosive and toxic gases. However, still they have some limitations like high working temperature due to their activation energy barrier. To achieve high sensitivity and resolution, working temperature above 200℃ was usually required in many studies. Therefore, enhancing sensitivity in room temperature is one of the chal-lenges for metal oxide semiconductor-based E-nose. In the present study, highly sensitive E-nose under room temperature were designed using IGZO and ZnO. Thin film transistor system was chosen as a base design of E-nose. IGZO and ZnO layer has deposited by sputter and annealed under 300℃ for 1 hour. Gas response of E-nose was measured by shift of transfer curve and two terminal real time resistance measurement. IPA gas was applied on device by N2 gas which has low chemical reactivity. IGZO shows significantly high gas response compares to ZnO due to its difference in physical-chemical structures. And due to their amorphous state, both IGZO and ZnO TFT show poor recov-ery characteristics under room temperature. They showed significantly enhanced recovery characteristic un-der 90℃ which is not appropriate for most of organic materials. To solve the problems, ZnO nanowire junction-based E-nose was prepared by hydro-thermal synthesiz-ing process. ZnCl and HMTA was used as solution for synthesizing. Solution changing period and synthesiz-ing time was controlled to fabricate various structure of nanowires. They show better gas response than ZnO TFT due to its significantly increased surface to volume ratio. Additionally, they show highly enhanced re-covery characteristic due to their crystal structure. As density of nanowires increase, recovery characteristic of nanowires was weakened. As length of nanowires increases, number of junctions increased, and it leads to enhancement in gas sensitivity. ZnO nanowires shows high sensitivity on Isopropyl alcohol and DI water. Al-so, they show excellent sensitivity on ethyl butyrate, eugenol and decanal which are odorants smells like fruity, clove and orange. E-nose based on ZnO nanowire junction has many advantages such like eco-friendly, bio-compatibility, low working temperature, high sensitivity on various gas and smells, and en-hanced recovery characteristic. Therefore, this E-nose device can be applied to various field such as bio-material enhanced E-nose, wearable E-nose or in implantable type of E-nose.
Table Of Contents
Ⅰ. INTRODUCTION 1.1 Theoretical background 2 1.1.1 Basic sensing mechanism of MOX gas sensor 2 1.1.2 ZnO nanowires 6 1.1.3 E-nose with ZnO nanowires 8 1.1.4 Enhancing gas sensing characteristics 11 IⅠ. METHOD 2.1 Fabrication of MOX TFT gas sensor 14 2.2 Fabrication of ZnO NWs based gas sensor 18 2.3 Configuration of measurement system 22 IIⅠ. RESULT AND DISCUSSION 3.1 3-terminal gas sensing of TFT structure E-nose 23 3.2 2-terminal gas sensing of TFT structure E-nose 28 3.3 Growth of ZnO NWs and their electrical characteristic 30 3.4 Sensing performance of ZnO NWs in various gases 36 3.5 Odorant sensing performance of ZnO NWs based E-nose 39 IV. CONCLUSION 41 REFERENCE
URI
http://dgist.dcollection.net/common/orgView/200000333113
http://hdl.handle.net/20.500.11750/12180
DOI
https://doi.org/10.22677/thesis.200000333113
Degree
Master
Department
Department of Information and Communication Engineering
University
DGIST
Related Researcher
  • Author Jang, Jae Eun Advanced Electronic Devices Research Group(AEDRG) - Jang Lab.
  • Research Interests Nanoelectroinc device; 생체 신호 센싱 시스템 및 생체 모방 디바이스; 나노 통신 디바이스
Files:
There are no files associated with this item.
Collection:
Department of Information and Communication EngineeringThesesMaster


qrcode mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE