Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Lee, Jinhong -
dc.contributor.author Lim, Hyung-Seok -
dc.contributor.author Cao, Xia -
dc.contributor.author Ren, Xiaodi -
dc.contributor.author Kwak, Won-Jin -
dc.contributor.author Rodriguez-Perez, Ismael A. -
dc.contributor.author Zhang, Ji-Guang -
dc.contributor.author Lee, Hongkyung -
dc.contributor.author Kim, Hee-Tak -
dc.date.accessioned 2021-01-22T06:44:42Z -
dc.date.available 2021-01-22T06:44:42Z -
dc.date.created 2020-09-16 -
dc.date.issued 2020-08 -
dc.identifier.issn 1944-8244 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/12589 -
dc.description.abstract Developing a safe and long-lasting lithium (Li) metal battery is crucial for high-energy applications. However, its poor cycling stability due to Li dendrite formation and excessive Li pulverization is the major hurdle for its practical applications. Here, we present a silica (SiO2) nanoparticle-dispersed colloidal electrolyte (NDCE) and its design principle for suppressing Li dendrite formation. SiO2 nanoclusters in the NDCE play roles in enhancing the Li+ transference number and increasing the Li+ diffusivity in the vicinity of the Li-plating substrate. The NDCE enables less-dendritic Li plating by manipulating the nucleation-growth mode and extending Sand's time. Moreover, SiO2 can interplay with the electrolyte components at the Li-metal surface, enriching fluorinated compounds in the solid electrolyte interface layer. The initial control of the Li plating morphology and SEI structure by the NDCE leads to a more uniform and denser Li deposition upon subsequent cycling, resulting in threefold enhancement of the cycle life. The efficacy of the NDCEs has been further demonstrated by the practical battery design, featuring a commercial-level cathode and thin Li-metal (40 μm) anode. Copyright © 2020 American Chemical Society. -
dc.language English -
dc.publisher American Chemical Society -
dc.title Lithium Dendrite Suppression with a Silica Nanoparticle-Dispersed Colloidal Electrolyte -
dc.type Article -
dc.identifier.doi 10.1021/acsami.0c09871 -
dc.identifier.scopusid 2-s2.0-85089714373 -
dc.identifier.bibliographicCitation ACS Applied Materials & Interfaces, v.12, no.33, pp.37188 - 37196 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor electrodeposition -
dc.subject.keywordAuthor Li dendrite -
dc.subject.keywordAuthor Li metal batteries -
dc.subject.keywordAuthor nanoparticle-dispersed colloidal electrolyte -
dc.subject.keywordAuthor silica nanoparticle -
dc.subject.keywordPlus HIGH-ENERGY -
dc.subject.keywordPlus HYBRID ELECTROLYTES -
dc.subject.keywordPlus SALT-SOLUTIONS -
dc.subject.keywordPlus METAL -
dc.subject.keywordPlus GROWTH -
dc.subject.keywordPlus PERFORMANCE -
dc.subject.keywordPlus ANODES -
dc.subject.keywordPlus CONDUCTIVITY -
dc.subject.keywordPlus MECHANISMS -
dc.subject.keywordPlus CHALLENGES -
dc.citation.endPage 37196 -
dc.citation.number 33 -
dc.citation.startPage 37188 -
dc.citation.title ACS Applied Materials & Interfaces -
dc.citation.volume 12 -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Energy Science and Engineering Electrochemical Materials & Devices Laboratory 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE