Cited time in webofscience Cited time in scopus

딥러닝 기반 초음파 홀로그램 생성 알고리즘 개발

딥러닝 기반 초음파 홀로그램 생성 알고리즘 개발
Alternative Title
Development of deep learning-based holographic ultrasound generation algorithm
Issued Date
Journal of the Acoustical Society of Korea, v.40, no.2, pp.169 - 175
Author Keywords
초음파 홀로그램딥러닝위상 검색Ultrasound hologramDeep learningU-NetPhase retrieval
최근 입자 조작, 신경 자극 등을 위해 초음파 홀로그램과 그 응용에 대해 연구가 활발히 되고 있다. 하지만홀로그램을 생성할 송신 신호 위상의 결정은 이전의 시간 소모적인 반복 최적화 방법에서 크게 벗어나지 않고 있다.
이에 본 연구에서는 광학 홀로그램 생성을 위해 활용된 바 있는 딥러닝 기법을 초음파 홀로그램 생성을 위해 적용하여소개한다. U-Net을 기반으로 알고리즘을 구성하였으며 원 모양의 데이터셋에 대해 학습하고 영어 알파벳에 대해 평가함으로써 그 일반화 가능성을 검증하였다. 또한 시뮬레이션을 통해 기존 알고리즘과 계산속도, 정확도, 균일도 측면에서 비교하였다. 결과적으로 정확도와 균일도는 기존에 비해 다소 떨어지지만 계산속도가 약 190배 빨라졌다. 따라서, 이 결과를 통해 딥러닝 기반 초음파 홀로그램 생성 알고리즘은 기존 방법보다 초음파 홀로그램을 빠르게 형성할 수 있는 것을 확인할 수 있었다.

Recently, an ultrasound hologram and its applications have gained attention in the ultrasound research field. However, the determination technique of transmit signal phases, which generate a hologram, has not been significantly advanced from the previous algorithms which are time-consuming iterative methods. Thus, we applied the deep learning technique, which has been previously adopted to generate an optical hologram, to generate an ultrasound hologram. We further examined the Deep learning-based Holographic Ultrasound Generation algorithm (Deep-HUG). We implement the U-Net-based algorithm and examine its generalizability by training on a dataset, which consists of randomly distributed disks, and testing on the alphabets (A-Z).
Furthermore, we compare the Deep-HUG with the previous algorithm in terms of computation time, accuracy, and uniformity. It was found that the accuracy and uniformity of the Deep-HUG are somewhat lower than those of the previous algorithm whereas the computation time is 190 times faster than that of the previous algorithm, demonstrating that Deep-HUG has potential as a useful technique to rapidly generate an ultrasound hologram for various applications.
Acoustical Society of Korea
Related Researcher
  • 황재윤 Hwang, Jae Youn 전기전자컴퓨터공학과
  • Research Interests Multimodal Imaging; High-Frequency Ultrasound Microbeam; Ultrasound Imaging and Analysis; 스마트 헬스케어; Biomedical optical system
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Electrical Engineering and Computer Science MBIS(Multimodal Biomedical Imaging and System) Laboratory 1. Journal Articles


  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.