Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.advisor Son, Sang Hyuk -
dc.contributor.author Park, Ho Min -
dc.date.accessioned 2017-05-10T08:52:19Z -
dc.date.available 2016-08-18T00:00:00Z -
dc.date.issued 2016 -
dc.identifier.uri http://dgist.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000002296398 en_US
dc.identifier.uri http://hdl.handle.net/20.500.11750/1440 -
dc.description.abstract After the advent of Internet of Things (IoT) in late 1990s, everyday objects are envisioned to be tightly interconnected by equipping them with wireless sensing and actuation capabilities to monitor and manipulate target environments. Consequently, such an extensive interconnection of physical objects generates massive amount of sensory data representing the physical phenomenon. While such functionalities are the basis of IoT, the raw data itself cannot be used to make smart and autonomous actuations. Considering such a lack of intelligence, many scholars stressed the need of context-aware computings to attain comprehensive knowledge regarding environmental contexts, including human activity contexts.
Considering the fact that most of IoT applications and services are designed to be human centric, we emphasized the need of Human Activity Inference Systems (HAIS) while addressing key research problems raised when HAIS is used by different IoT services. Throughout this work, we selected four interesting services, which we elaborated in the main chapters, within three IoT application domains. After going through each technical chapters, we noted that accurate context inferencing results yielded from HAIS can benefit one or more IoT architecture layer(s) by carefully controlling various system parameters depending on the human activity contexts.
Contributions of each technical chapters can be briefly summarized as follows.
The very first chapter started from questioning the possibilities of identifying a human activity context, namely driving. According previous studies, texting while driving significantly increases the chance of getting into an accidents, thus appropriate protection services must be applied when the user is found to be driving a vehicle. In order to extract such a human activity context, we proposed a HAIS which effectively extract, analyze, and fuse the heterogeneous sensory information on commodity smartphones. In accordance with the IoT architecture layers, this chapter contributed to improve the performance of top two layers, namely application service and information integration layers.
Next chapter was initiated with an objective to compress the capabilities of a microphone sensor to fit in resource-limited IoT platforms. In fact, we proposed a HAIS, which extracts most frequently found office meeting activities using heterogeneous IoT-enabled objects installed throughout a smart office environment. we believe that our considerations can open the possibilities to quickly commercialize human activity context extraction systems to everyday users by providing them with an easy-to-install system that is applicable to various application scenarios. Under such a system, various smart office applications are be integrated to increase the human comfort levels and maximize the operational efficiency. The contributions of this chapter dealt with information integration layer and application service layer.
Throughout the third chapter, we present an activity-aware sensor cycling solution tailored to smart home environments that significantly increases the accuracy and reliability of activity detection by exploiting the inherent correlations residing in the residents' behavioral patterns. The proposed solution predicts the activity patterns that are most likely to occur and, based on the prediction results, determines the role of each sensor to monitor the environment. The contributing factor with this work was that human activity context extracted by HAIS can also be used to enhance the performance of object sensing layer by carefully controlling the sensory data acquisition techniques. We note that this chapter dealt with the object sensing layer from the IoT architecture.
The last chapter introduced a light-weight, energy-efficient, low-latency privacy protection scheme for smart home environments against side channel attacks. According to the studies, data encryptions cannot provide acceptable level of privacy protections against smart adversaries. In fact, we introduced the concept of cloaking activities to hide the actual human activity context while saving as much energy as possible. Contributing factors of this work dealt with privacy protection and data exchange layer to support the intelligent IoT applications and services provided through smart home environments. ⓒ 2016 DGIST
-
dc.description.tableofcontents 1 Introduction 1--
1.1 Internet of Things Paradigm and Need for Context-aware Computing 1--
1.1.1 Internet of Things 1--
1.1.2 Context-aware Computing 3--
1.2 Importance of Human Activity Inference Systems 3--
1.3 System-level Considerations when Designing HAIS 4--
1.4 Research Problems and Contributions 5--
1.4.1 Driver’s Smartphone Identification for Distraction-free Driving 6--
1.4.2 Office Activity Context Inferencing under Resource-limited Platforms 7--
1.4.3 Reliable and Energy-efficient Sensor Cycling for Smart Home Services 7--
1.4.4 Energy-efficient Smart Home Privacy Protection using Activity Contexts 7--
1.5 Dissertation Organization 8--
2 Automatic Identification of Driver’s Smartphone 9--
2.1 Introduction 9--
2.2 System Design 11--
2.2.1 Design Overview 12--
2.2.2 Walking and Standing Detector (WSD) 12--
2.2.3 Smartphone Position Classifier (SPC) 16--
2.2.4 Entrance Detector (ETD) 17--
2.2.5 Entrance Direction Classifier (EDC) 23--
2.2.6 Seated Row Classifier (SRC) 25--
2.2.7 Activating Distracted Driving Prevention Services 28--
2.3 Performance Evaluation 29--
2.3.1 Experimental Setup 29--
2.3.2 Evaluation Criteria 29--
2.3.3 Evaluation Results 30--
2.4 Related Work 41--
2.5 Conclusion 43--
3 Utilizing Resource-limited Sensors for Office Activity Context Extraction 44--
3.1 Introduction 44--
3.2 Activity Context Extraction: Issues with utilizing resource limited hardware 46--
3.3 ReLiSCE: Utilizing Resource-limited Sensors for Activity Context Extraction 48--
3.3.1 Defining the Target Detection Activity States 48--
3.3.2 Hardware Components in ReLiSCE 49--
3.3.3 Microphone Array Sensor Processing Scheme 52--
3.3.4 PIR Sensor Processing Scheme 57--
3.3.5 Illumination Sensor Processing Scheme 58--
3.3.6 Combining Heterogeneous Sensors In ReLiSCE 58--
3.3.7 Minimizing Sensor Usage 60--
3.4 Performance Evaluation 60--
3.4.1 Microphone Array Sensor Performance 61--
3.4.2 PIR Sensing Platform Evaluation 64--
3.4.3 Illumination Sensing Platform Evaluation 68--
3.4.4 Discussions on Connecting ReLiSCE with Applications 71--
3.5 Related Work 72--
3.6 Conclusion 74--
4 Activity-aware Sensor Cycling for Human Activity Monitoring 75--
4.1 Introduction 75--
4.2 Algorithm Description 77--
4.2.1 Selecting Active Sensors via Activity Prediction 78--
4.2.2 Appointing Sentry Sensors Based on Semantic Similarity 78--
4.3 Performance Evaluation 80--
4.3.1 Simulation Setup 80--
4.3.2 Activity Detection Accuracy 81--
4.3.3 Fairness in Energy Consumption 81--
4.4 Conclusion 84--
5 Energy-Efficient Privacy Protection Using Behavioral Semantics 85--
5.1 Introduction 85--
5.2 A Side Channel Attack for ADL Detection 87--
5.3 Semantic Privacy Preservation via Energy-Efficient Traffic Generation 90--
5.3.1 Semantic Distance between Sensors 94--
5.3.2 Semantic Similarity Graph (SSG) 95--
5.3.3 Cloaking Activities and Privacy 96--
5.3.4 Lower Layer Considerations 97--
5.4 Performance Evaluation 97--
5.4.1 Experimental Setup 97--
5.4.2 Evaluation Results 99--
5.4.3 Discussions 106--
5.5 Related Work 107--
5.6 Conclusion 109--
6 Conclusion 110--
References 112
-
dc.format.extent 120 -
dc.language eng -
dc.publisher DGIST -
dc.subject HHuman Activity Inference Systems -
dc.subject Smartphones -
dc.subject Wireless Sensor Networks -
dc.subject Smart Environments -
dc.subject IoT architectures -
dc.subject 행동 추론 시스템 -
dc.subject 스마트폰 -
dc.subject 무선센서네트워크 -
dc.subject 스마트 환경 -
dc.subject 사물인터넷구조 -
dc.title Human Activity Inference Systems for Context-aware Internet of Things Applications -
dc.title.alternative 상황 인지 기반 사물인터넷 어플리케이션을 위한 사람 행동 추론 시스템 -
dc.type Thesis -
dc.identifier.doi 10.22677/thesis.2296398 -
dc.description.alternativeAbstract 사물인터넷 Internet of Things (IoT) 은 우리가 일상 생활에서 마주하는 각종 사물에 Wireless Sensing and Actuation Technology (WSAT) 를 내장하여 인터넷을 통해 연결하는 기술이다. 여기서 사물이란 옷감, 가전제품, 모바일 장비, 사회 기반 시설 등 다양한 물체를 포함한다. 유비쿼터스하게 분포되어 있는 사물들은 센서를 통해 방대한 양의 환경 데이터를 지속적으로 수집하며 이를 다른 사물 객체와 공유하여 지능적 서비스제공의 틀을 제공한다. 센서 간의 유기적 연동을 통한 환경 정보 수집으로 모이는 막대한 양의 센서 데이터는 그 자체 만으로 지능적/자동적 서비스 제공이 불가능하며 센서 데이터를 각종 분석 기법을 통해 유의미한 상황 정보로 변형해야만 각종 지능형 어플리케이션 및 서비스에서 필요로 하는 올바른 환경 변환 및 사용자 지원이 가능해진다. 이를 해결 하기 위한 방법으로는 context-aware computing 이 사용되고 있으며 본 논문에서는 context-aware computing 분야 중 하나인 사람 행동 추론 시스템 Human Activity Inference Systems (HAIS) 의 중요성과 각 지능형 어플리케이션 및 서비스에서 필요로 하는 디자인 요소 및 시스템 및 서비스 레벨의 기술적 요구사항들을 다루고 있다. 여러 IoT 어플리케이션중 우리는 3 가지 분야를 선택하였다. 이는 1) 차량 안전, 2) 스마트 오피스, 3) 스마트 홈이며 각 분야별로 최근 주목받고 있는 한가지 혹은 두가지 지능형 서비스를 골라 HAIS를 필요에 맞게 개발하였다. 각 시스템의 기여 점은 아래와 같이 간략하게 요약될 수 있다.
첫번째 챕터에서는 운전 중 스마트폰 사용을 방지하는 안전 서비스의 필요성과 운전자의 스마트폰을 찾는데 필요한 HAIS 디자인 요소들을 다루고 있으며 이는 사물인터넷을 구성하는 시스템 층 중 application service 와 information integration 층의 성능 및 실용성을 증가 시키고 있다. 두번째 챕터에서는 성능 제약이 심한 IoT 환경에서도 사용 가능한 스마트 오피스용 HAIS를 제시하였으며 이는 application service 와 information integration 층의 효율성과 성능 보존을 다루었다. 세번째 챕터에서는 스마트 홈 환경 내부에서 거주자의 행동 정보를 모니터링 하는 방법론 중 하나인 sensor duty cycling 을 다루고 있으며 기존 행동 예측 및 sentry 기반의 기술적 단점을 보완하기 위해 HAIS 기반의 새로운 센서 사용 기법을 제시하고 있다. 이 챕터는 사물인터넷 시스템 구성 중 최 하위 단인 object sensing layer의 성능 및 효율성 향상을 다루고 있다. 마지막 챕터에서는 스마트 홈 환경에서 필요로 하는 개인정보 보호법을 다루고 있으며 HAIS를 이용해 거주자의 행동 패턴을 예측 한 뒤 이를 activity cloak 기법을 사용하여 지능적 adversary에 대항하였다. 이를 통해 본 챕터는 사물인터넷 구성 요소 중 전체 층에서 필요로 하는 개인정보 보호 단의 효율성 향상과 이에 따른 성능 저하의 최소화를 다루고 있다. ⓒ 2016 DGIST
-
dc.description.degree Doctor -
dc.contributor.department Information and Communication Engineering -
dc.contributor.coadvisor Ko, Jeong Gil -
dc.date.awarded 2016. 8 -
dc.publisher.location Daegu -
dc.description.database dCollection -
dc.date.accepted 2016-08-18 -
dc.contributor.alternativeDepartment 대학원 정보통신융합공학전공 -
dc.contributor.affiliatedAuthor Park, Ho Min -
dc.contributor.affiliatedAuthor Son, Sang Hyuk -
dc.contributor.alternativeName 박호민 -
dc.contributor.alternativeName 손상혁 -
dc.contributor.alternativeName 고정길 -
Files in This Item:
000002296398.pdf

000002296398.pdf

기타 데이터 / 15.33 MB / Adobe PDF download
Appears in Collections:
Department of Electrical Engineering and Computer Science Theses Master

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE