Detail View

DC Field Value Language
dc.contributor.author Heo, Seungkyoung -
dc.contributor.author Ha, Jeongdae -
dc.contributor.author Son, Sook Jin -
dc.contributor.author Choi, In Sun -
dc.contributor.author Lee, Hyeokjun -
dc.contributor.author Oh, Saehyun -
dc.contributor.author Jekal, Janghwan -
dc.contributor.author Kang, Min Hyung -
dc.contributor.author Lee, Gil Ju -
dc.contributor.author Jung, Han Hee -
dc.contributor.author Yea, Junwoo -
dc.contributor.author Lee, Taeyoon -
dc.contributor.author Lee, Youngjeon -
dc.contributor.author Choi, Ji-Woong -
dc.contributor.author Xu, Sheng -
dc.contributor.author Choi, Joon Ho -
dc.contributor.author Jeong, Jae-Woong -
dc.contributor.author Song, Young Min -
dc.contributor.author Rah, Jong-Cheol -
dc.contributor.author Keum, Hohyun -
dc.contributor.author Jang, Kyung-In -
dc.date.accessioned 2021-10-01T07:30:11Z -
dc.date.available 2021-10-01T07:30:11Z -
dc.date.created 2021-07-29 -
dc.date.issued 2021-07 -
dc.identifier.issn 2375-2548 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/15384 -
dc.description.abstract Transfer printing is a technique that integrates heterogeneous materials by readily retrieving functional elements from a grown substrate and subsequently printing them onto a specific target site. These strategies are broadly exploited to construct heterogeneously integrated electronic devices. A typical wet transfer printing method exhibits limitations related to unwanted displacement and shape distortion of the device due to uncontrollable fluid movement and slow chemical diffusion. In this study, a dry transfer printing technique that allows reliable and instant release of devices by exploiting the thermal expansion mismatch between adjacent materials is demonstrated, and computational studies are conducted to investigate the fundamental mechanisms of the dry transfer printing process. Extensive exemplary demonstrations of multiscale, sequential wet-dry, circuit-level, and biological topography-based transfer printing demonstrate the potential of this technique for many other emerging applications in modern electronics that have not been achieved through conventional wet transfer printing over the past few decades. -
dc.language English -
dc.publisher American Association for the Advancement of Science -
dc.title Instant, multiscale dry transfer printing by atomic diffusion control at heterogeneous interfaces -
dc.type Article -
dc.identifier.doi 10.1126/sciadv.abh0040 -
dc.identifier.wosid 000672817500013 -
dc.identifier.scopusid 2-s2.0-85110245889 -
dc.identifier.bibliographicCitation Heo, Seungkyoung. (2021-07). Instant, multiscale dry transfer printing by atomic diffusion control at heterogeneous interfaces. Science Advances, 7(28). doi: 10.1126/sciadv.abh0040 -
dc.description.isOpenAccess TRUE -
dc.subject.keywordPlus THIN-FILM TRANSISTORS -
dc.subject.keywordPlus LIGHT-EMITTING-DIODES -
dc.subject.keywordPlus INTEGRATED-CIRCUITS -
dc.subject.keywordPlus SILICON -
dc.subject.keywordPlus ASSEMBLIES -
dc.subject.keywordPlus DEVICES -
dc.subject.keywordPlus DESIGNS -
dc.subject.keywordPlus ARRAYS -
dc.subject.keywordPlus POWER -
dc.citation.number 28 -
dc.citation.title Science Advances -
dc.citation.volume 7 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Science & Technology - Other Topics -
dc.relation.journalWebOfScienceCategory Multidisciplinary Sciences -
dc.type.docType Article -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

최지웅
Choi, Ji-Woong최지웅

Department of Electrical Engineering and Computer Science

read more

Total Views & Downloads