WEB OF SCIENCE
SCOPUS
Key-value store based on a log-structured merge-tree (LSM-tree) is preferable to hash-based key-value store, because an LSM-tree can support a wider variety of operations and show better performance, especially for writes. However, LSM-tree is difficult to implement in the resource constrained environment of a key-value SSD (KV-SSD), and, consequently, KV-SSDs typically use hash-based schemes. We present PinK, a design and implementation of an LSM-tree-based KV-SSD, which compared to a hash-based KV-SSD, reduces 99th percentile tail latency by 73%, improves average read latency by 42%, and shows 37% higher throughput. The key idea in improving the performance of an LSM-tree in a resource constrained environment is to avoid the use of Bloom filters and instead, use a small amount of DRAM to keep/pin the top levels of the LSM-tree. We also find that PinK is able to provide a flexible design space for a wide range of KV workloads by leveraging the read-write tradeoff in LSM-trees. © 2021 Association for Computing Machinery.
더보기Department of Electrical Engineering and Computer Science