Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Kim, Dong-Il -
dc.contributor.author Park, Yongsoo -
dc.contributor.author Jang, Deok-Jin -
dc.contributor.author Suh, Byung-Chang -
dc.date.available 2017-05-11T01:36:23Z -
dc.date.created 2017-04-10 -
dc.date.issued 2015-06 -
dc.identifier.issn 0022-1295 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/1570 -
dc.description.abstract High voltage-activated Ca2+ (CaV) channels are protein complexes containing pore-forming α1 and auxiliary β and α2δ subunits. The subcellular localization and membrane interactions of the β subunits play a crucial role in regulating CaV channel inactivation and its lipid sensitivity. Here, we investigated the effects of membrane phosphoinositide (PI) turnover on CaV2.2 channel function. The β2 isoform β2e associates with the membrane through electrostatic and hydrophobic interactions. Using chimeric β subunits and liposome-binding assays, we determined that interaction between the N-terminal 23 amino acids of β2e and anionic phospholipids was sufficient for β2e membrane targeting. Binding of the β2e subunit N terminus to liposomes was significantly increased by inclusion of 1% phosphatidylinositol 4,5-bisphosphate (PIP2) in the liposomes, suggesting that, in addition to phosphatidylserine, PIs are responsible for β2e targeting to the plasma membrane. Membrane binding of the β2e subunit slowed CaV2.2 current inactivation. When membrane phosphatidylinositol 4-phosphate and PIP2 were depleted by rapamycin-induced translocation of pseudojanin to the membrane, however, channel opening was decreased and fast inactivation of CaV2.2(β2e) currents was enhanced. Activation of the M1 muscarinic receptor elicited transient and reversible translocation of β2e subunits from membrane to cytosol, but not that of β2a or β3, resulting in fast inactivation of CaV2.2 channels with β2e. These results suggest that membrane targeting of the β2e subunit, which is mediated by nonspecific electrostatic insertion, is dynamically regulated by receptor stimulation, and that the reversible association of β2e with membrane PIs results in functional changes in CaV channel gating. The phospholipid- protein interaction observed here provides structural insight into mechanisms of membrane-protein association and the role of phospholipids in ion channel regulation. © 2015 Kim et al. -
dc.publisher Rockefeller University Press -
dc.title Dynamic phospholipid interaction of beta 2e subunit regulates the gating of voltage-gated Ca2+ channels -
dc.type Article -
dc.identifier.doi 10.1085/jgp.201411349 -
dc.identifier.scopusid 2-s2.0-84956624315 -
dc.identifier.bibliographicCitation Journal of General Physiology, v.145, no.6, pp.529 - 541 -
dc.subject.keywordPlus BETA(2A) SUBUNIT -
dc.subject.keywordPlus CALCIUM-CHANNELS -
dc.subject.keywordPlus CELLS -
dc.subject.keywordPlus DIFFERENTIAL REGULATION -
dc.subject.keywordPlus Electrostatics -
dc.subject.keywordPlus INACTIVATION -
dc.subject.keywordPlus LOCALIZATION -
dc.subject.keywordPlus Neurons -
dc.subject.keywordPlus Palmitoylation -
dc.subject.keywordPlus PLASMA-MemBRANE PHOSPHOINOSITIDES -
dc.citation.endPage 541 -
dc.citation.number 6 -
dc.citation.startPage 529 -
dc.citation.title Journal of General Physiology -
dc.citation.volume 145 -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Brain Sciences Laboratory of Brain Signal and Synapse Research 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE