Cited 0 time in webofscience Cited 0 time in scopus

휴대용 fNIRS를 이용한 머신러닝 기반의 알츠하이머병 진단 기술 연구

휴대용 fNIRS를 이용한 머신러닝 기반의 알츠하이머병 진단 기술 연구
Translated Title
The Symptom Classification of Alzheimer’s Disease Based on Machine Learning: A Functional Near-infrared Spectroscopy Study
DGIST Authors
김보민; 유진우; 김은호; 임성호; 최지웅
Issue Date
한국통신학회논문지, 46(7), 1185-1198
Author Keywords
fNIRS(Functional near-infrared spectroscopy)Machine learningAlzheimer’s diseasePrefrontal cortex
본 논문은 고령화 사회에 접어든 대한민국에서 심각한 사회 문제로 대두된 알츠하이머병을 간편하게 검진하여환자에게 적절한 치료를 제공할 수 있도록 휴대용 fNIRS기기를 통한 알츠하이머병의 조기 진단 기술을 제안한다. 이를 위해 fNIRS 기기로부터 얻은 정상인, 경도 인지 장애 환자, 알츠하이머병 환자의 행동데이터를 인공 신경망모델을 이용한 머신러닝을 통해 분류하였다. 실험 참여자들은 작업기억 기반의 행동과제를 수행하였고, 과제가 수행되는 동안 각 참가자들의 전전두엽 피질에서 일어나는 뇌혈류의 변화를 휴대용 fNIRS 기기를 이용해 수집하였다. 수집된 데이터를 이용해 뇌의 기능적 연결망 분석을 기반으로 한 특징을 추출하였고, 추출된 특징 데이터를통해 훈련한 머신러닝 알고리즘을 이용하여 알츠하이머병 진단 성능을 평가하였다. 그 결과, 정상인과 MCI 환자, 그리고 알츠하이머병 환자를 2-class 분류를 통해 구분할 수 있었다. 이를 통해 본 논문은 휴대용 fNIRS 장비를이용한 알츠하이머병의 조기 진단의 가능성을 보일 수 있었다. This paper demonstrates a technology for early diagnosis of Alzheimer's disease through a portable fNIRS device so that Alzheimer's disease, which has become a serious social problem in the aging society, can be easily screened and appropriately treated to patients. To prove the hypothesis, the brain signals of normal people, mild cognitive impairment patients, and Alzheimer's disease patients obtained from the fNIRS device were classified through machine learning using an artificial neural network model. Participants in the experiment performed behavioral tasks based on working memory, and changes in cerebral blood flow occurring in the prefrontal cortex of each participant during the task were collected using a portable fNIRS device. Using the collected data, features based on functional network analysis of the brain were extracted, and Alzheimer's disease diagnosis performance was evaluated using machine learning algorithms trained through the extracted features’ data. As a result, normal people, MCI patients, and Alzheimer's disease patients could be classified through 2-class classification. Through this result, this paper is able to show the possibility of early screening of Alzheimer's disease severity by using portable fNIRS device.
Related Researcher
  • Author Choi, Ji-Woong CSP(Communication and Signal Processing) Lab
  • Research Interests Communication System; Signal Processing; Communication Circuit Design; 생체 신호 통신 및 신호 처리; 뇌-기계 인터페이스(BMI); 차세대 교차계층 통신 및 신호 처리; 5G 모바일 통신
There are no files associated with this item.
Department of Electrical Engineering and Computer ScienceCSP(Communication and Signal Processing) Lab1. Journal Articles

qrcode mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.