Detail View

DC Field Value Language
dc.contributor.author Lee, Hyeon Gyu -
dc.contributor.author Kim, Minwook -
dc.contributor.author Lee, Juwon -
dc.contributor.author Lee, Eunji -
dc.contributor.author Kim, Bryan S. -
dc.contributor.author Lee, Sungjin -
dc.contributor.author Kim, Yeseong -
dc.contributor.author Min, Sang Lyul -
dc.contributor.author Kim, Jin-Soo -
dc.date.accessioned 2021-11-25T03:00:02Z -
dc.date.available 2021-11-25T03:00:02Z -
dc.date.created 2021-11-11 -
dc.date.issued 2021-07 -
dc.identifier.issn 1556-6056 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/15856 -
dc.description.abstract The advent of new SSDs with ultra-low latency makes the validation of their firmware critical in the development process. However, existing SSD simulators do not sufficiently achieve high accuracy in their performance estimations for their firmware. In this paper, we present an accurate and data-driven performance model that builds a cross-platform relationship between the simulator and target platform. We directly execute the firmware on both platforms, collect its related performance profiles, and construct a performance model that infers the firmware's performance on the target platform using performance events from the simulation. We explore both a linear regression model and a deep neural network model, and our cross-validation shows that our model achieves a percent error of 3.1%, significantly lower than 18.9% from a state-of-the-art simulator. © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. -
dc.language English -
dc.publisher Institute of Electrical and Electronics Engineers -
dc.title Learned Performance Model for SSD -
dc.type Article -
dc.identifier.doi 10.1109/LCA.2021.3120728 -
dc.identifier.scopusid 2-s2.0-85118273093 -
dc.identifier.bibliographicCitation Lee, Hyeon Gyu. (2021-07). Learned Performance Model for SSD. IEEE Computer Architecture Letters, 20(2), 154–157. doi: 10.1109/LCA.2021.3120728 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor Cross-platform -
dc.subject.keywordAuthor performance prediction -
dc.subject.keywordAuthor solid state drives -
dc.subject.keywordAuthor simulation -
dc.subject.keywordPlus Simulators -
dc.subject.keywordPlus Deep neural networks -
dc.subject.keywordPlus Digital storage -
dc.subject.keywordPlus Firmware -
dc.subject.keywordPlus Linear regression -
dc.subject.keywordPlus Cross-platform -
dc.subject.keywordPlus Hardware -
dc.subject.keywordPlus Performance -
dc.subject.keywordPlus Performance Modeling -
dc.subject.keywordPlus Performance prediction -
dc.subject.keywordPlus Performances evaluation -
dc.subject.keywordPlus Predictive models -
dc.subject.keywordPlus Prototype -
dc.subject.keywordPlus Simulation -
dc.subject.keywordPlus Solid state drive -
dc.citation.endPage 157 -
dc.citation.number 2 -
dc.citation.startPage 154 -
dc.citation.title IEEE Computer Architecture Letters -
dc.citation.volume 20 -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

이성진
Lee, Sungjin이성진

Department of Electrical Engineering and Computer Science

read more

Total Views & Downloads