Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Hong, Woongki -
dc.contributor.author Lee, Jee Woong -
dc.contributor.author Kim, Duhee -
dc.contributor.author Hwang, Yujin -
dc.contributor.author Lee, Junhee -
dc.contributor.author Kim, Junil -
dc.contributor.author Hong, Nari -
dc.contributor.author Kwon, Hyuk-Jun -
dc.contributor.author Jang, Jae Eun -
dc.contributor.author Punga, Anna Rostedt -
dc.contributor.author Kang, Hongki -
dc.date.accessioned 2021-12-08T14:30:13Z -
dc.date.available 2021-12-08T14:30:13Z -
dc.date.created 2021-11-22 -
dc.date.issued 2022-02 -
dc.identifier.issn 1616-301X -
dc.identifier.uri http://hdl.handle.net/20.500.11750/15928 -
dc.description.abstract Electro-optical neural interface technologies provide great potential and versatility in neuroscience research. High temporal resolution of electrical neural recording and high spatial resolution of optical neural interfacing such as calcium imaging or optogenetics complimentarily benefit the way information is accessed from neuronal networks. To develop a hybrid neural interface platform, it is necessary to build transparent, soft, flexible microelectrode arrays (MEAs) capable of measuring electrical signals without light-induced artifacts. In this work, flexible and transparent ultrathin (<10 nm) gold MEAs are developed using a biocompatible polyelectrolyte multilayer (PEM) metallic film nucleation-inducing seed layer. With the polymer seed layer, the thermally evaporated ultrathin gold film shows good conductivity while providing high optical transmittance and excellent mechanical flexibility. In addition, strong electrostatic interaction via the PEM alters the electrode-electrolyte interfaces, thereby reducing the electrode impedance and baseline noise level. With a simple modification of the fabrication process of the MEA using biocompatible materials, both excellent transmittance, and electrochemical interface characteristics are achieved, which is promising for efficient electro-optical neural interfaces. © 2021 Wiley-VCH GmbH -
dc.language English -
dc.publisher John Wiley & Sons Ltd. -
dc.title Ultrathin Gold Microelectrode Array using Polyelectrolyte Multilayers for Flexible and Transparent Electro‐Optical Neural Interfaces -
dc.type Article -
dc.identifier.doi 10.1002/adfm.202106493 -
dc.identifier.wosid 000720735800001 -
dc.identifier.scopusid 2-s2.0-85119496322 -
dc.identifier.bibliographicCitation Advanced Functional Materials, v.32, no.9, pp.2106493 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor flexible electrodes -
dc.subject.keywordAuthor microelectrode arrays -
dc.subject.keywordAuthor neural interfaces -
dc.subject.keywordAuthor polyelectrolytes -
dc.subject.keywordAuthor transparent electrodes -
dc.subject.keywordPlus ELECTRODE -
dc.subject.keywordPlus FILMS -
dc.subject.keywordPlus ELECTROPHYSIOLOGY -
dc.subject.keywordPlus ADSORPTION -
dc.subject.keywordPlus NANOWIRES -
dc.subject.keywordPlus SIGNALS -
dc.subject.keywordPlus SURFACE -
dc.citation.number 9 -
dc.citation.startPage 2106493 -
dc.citation.title Advanced Functional Materials -
dc.citation.volume 32 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science; Physics -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter -
dc.type.docType Article -

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE