Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Han, Sanghun -
dc.contributor.author Kim, Jigeon -
dc.contributor.author Kim, Dong Eon -
dc.contributor.author Ko, Min Jae -
dc.contributor.author Choi, Jongmin -
dc.contributor.author Baek, Se-Woong -
dc.contributor.author Kim, Younghoon -
dc.date.accessioned 2022-10-27T08:00:02Z -
dc.date.available 2022-10-27T08:00:02Z -
dc.date.created 2022-04-11 -
dc.date.issued 2022-04 -
dc.identifier.issn 2050-7488 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/16958 -
dc.description.abstract Advances in the surface ligand exchange process of all-inorganic CsPbI3 perovskite colloidal quantum dots (PQDs) have enabled the fabrication of conductive PQD solids and their utilization as photovoltaic (PV) absorbers in next-generation solution-processed thin-film solar cells. However, PQD absorbers fabricated using the ligand exchange approach for application in high-efficiency PQD solar cells do not absorb, but transmit, a significant amount of the incident solar light. In addition, PQD absorbers are not suitable for fabricating thick films because of their short carrier diffusion length. Herein, we demonstrate that the introduction of nanophotonic structures in CsPbI3-PQD solar cells increases their light absorption via the light scattering effect, thereby improving their PV performance while maintaining the PQD absorber film thickness. We fabricate nanostructures on a spiro-OMeTAD hole-transport layer with sufficient film thickness and flexibility using nanoimprint lithography. We also find that a short spin-coating time is required to fabricate well-defined nanostructures on spiro-OMeTAD because of its high glass transition temperature. Thus, the nanostructured CsPbI3-PQD solar cells with a power conversion efficiency of up to 15.0% and a current density of 16.5 mA cm(-2) show improved PV performance as compared to the flat control device with the same PQD absorber film thickness. -
dc.language English -
dc.publisher Royal Society of Chemistry -
dc.title A small-molecule-templated nanostructure back electrode for enhanced light absorption and photocurrent in perovskite quantum dot photovoltaics -
dc.type Article -
dc.identifier.doi 10.1039/d2ta00681b -
dc.identifier.wosid 000772512300001 -
dc.identifier.scopusid 2-s2.0-85127861072 -
dc.identifier.bibliographicCitation Journal of Materials Chemistry A, v.10, no.16, pp.8966 - 8974 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordPlus SOLAR-CELLS -
dc.subject.keywordPlus CH3NH3PBI3 PEROVSKITE -
dc.subject.keywordPlus EFFICIENCY -
dc.subject.keywordPlus DESIGN -
dc.subject.keywordPlus LAYER -
dc.subject.keywordPlus STATE -
dc.citation.endPage 8974 -
dc.citation.number 16 -
dc.citation.startPage 8966 -
dc.citation.title Journal of Materials Chemistry A -
dc.citation.volume 10 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Chemistry; Energy & Fuels; Materials Science -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary -
dc.type.docType Article -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Energy Science and Engineering Chemical & Energy Materials Engineering (CEME) Laboratory 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE