Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Cho, Wansu -
dc.contributor.author Lee, Dongjun -
dc.contributor.author Choi, Gyeonghyeon -
dc.contributor.author Kim, Jihyo -
dc.contributor.author Kojo, Acquah Ebenezer -
dc.contributor.author Park, Chiyoung -
dc.date.accessioned 2022-10-27T08:30:01Z -
dc.date.available 2022-10-27T08:30:01Z -
dc.date.created 2022-10-26 -
dc.date.issued 2022-12 -
dc.identifier.issn 0935-9648 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/16959 -
dc.description.abstract Freshwater shortage is becoming one of the most critical global challenges owing to severe water pollution caused by micropollutants and volatile organic compounds (VOCs). However, current purification technology shows slow adsorption of micropollutants and requires an energy-intensive process for VOCs removal from water. In this study, a highly efficient molecularly engineered covalent triazine framework (CTF) for rapid adsorption of micropollutants and VOC-intercepting performance using solar distillation is reported. Supramolecular design and mild oxidation of CTFs (CTF-OXs) enable hydrophilic internal channels and improve molecular sieving of micropollutants. CTF-OX shows rapid removal efficiency of micropollutants (>99.9% in 10 s) and can be regenerated several times without performance loss. Uptake rates of selected micropollutants are high, with initial pollutant uptake rates of 21.9 g mg(-1) min(-1), which are the highest rates recorded for bisphenol A (BPA) adsorption. Additionally, photothermal composite membrane fabrication using CTF-OX exhibits high VOC rejection rate (up to 98%) under 1 sun irradiation (1 kW m(-2)). A prototype of synergistic purification system composed of adsorption and solar-driven membrane can efficiently remove over 99.9% of mixed phenol derivatives. This study provides an effective strategy for rapid removal of micropollutants and high VOC rejection via solar-driven evaporation process. -
dc.language English -
dc.publisher WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim -
dc.title Supramolecular Engineering of Amorphous Porous Polymers for Rapid Adsorption of Micropollutants and Solar-Powered Volatile Organic Compounds Management -
dc.type Article -
dc.identifier.doi 10.1002/adma.202206982 -
dc.identifier.wosid 000865570400001 -
dc.identifier.scopusid 2-s2.0-85139396187 -
dc.identifier.bibliographicCitation Advanced Materials, v.34, no.50 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor adsorption -
dc.subject.keywordAuthor amorphous porous polymers -
dc.subject.keywordAuthor organic micropollutants -
dc.subject.keywordAuthor supramolecular engineering -
dc.subject.keywordAuthor volatile organic compounds removal -
dc.subject.keywordPlus SELECTIVE ADSORPTION -
dc.subject.keywordPlus EFFICIENT REMOVAL -
dc.subject.keywordPlus FRAMEWORKS -
dc.subject.keywordPlus PHENOL -
dc.subject.keywordPlus SORPTION -
dc.subject.keywordPlus CARBON -
dc.subject.keywordPlus WATER -
dc.subject.keywordPlus DYE -
dc.subject.keywordPlus BISPHENOL-A -
dc.subject.keywordPlus AQUEOUS-SOLUTION -
dc.identifier.url https://onlinelibrary.wiley.com/doi/10.1002/adma.202270343 -
dc.citation.number 50 -
dc.citation.title Advanced Materials -
dc.citation.volume 34 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science; Physics -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter -
dc.type.docType Article -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Energy Science and Engineering Polymer Interface & Energy Laboratory 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE