Detail View

Conditional GAN with 3D discriminator for MRI generation of Alzheimer's disease progression
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Jung, Euijin -
dc.contributor.author Luna, Miguel -
dc.contributor.author Park, Sang Hyun -
dc.date.accessioned 2023-01-03T19:40:12Z -
dc.date.available 2023-01-03T19:40:12Z -
dc.date.created 2022-10-12 -
dc.date.issued 2023-01 -
dc.identifier.issn 0031-3203 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/17280 -
dc.description.abstract Many studies aim to predict the degree of deformation on affected brain regions as Alzheimer's disease (AD) progresses. However, those studies have been often limited since it is difficult to obtain sequential longitudinal MR data of affected patients. Recently, conditional generative adversarial networks (cGANs) have been used to estimate the changes between unpaired images by modeling their differences. However, generating high-quality 3D magnetic resonance (MR) brain images with cGANs requires a large amount of computation. Previous models have been mostly designed to operate in 2D space taking individual slices or down-sampled 3D space, but these approaches often cause spatial artifacts such as discontinuities between slices or unnatural changes in 3D space. To address these limitations, we propose a novel cGAN that can synthesize high-quality 3D MR images at different stages of AD by integrating an additional module that ensures smooth and realistic transitions in 3D space. Specifically, the proposed cGAN model consists of an attention-based 2D generator, a 2D discriminator, and a 3D discriminator that is able to synthesize continuous 2D slices along the axial view resulting in good quality 3D MR volumes. Moreover, we propose an adaptive identity loss so that relevant transformations take place without compromising the features to identify patients. In our experiments, the proposed method showed better image generation performance than previously proposed GAN methods in terms of image quality and image generation suitable for the condition. © 2022 Elsevier Ltd -
dc.language English -
dc.publisher Pergamon Press -
dc.title Conditional GAN with 3D discriminator for MRI generation of Alzheimer's disease progression -
dc.type Article -
dc.identifier.doi 10.1016/j.patcog.2022.109061 -
dc.identifier.wosid 000870987900001 -
dc.identifier.scopusid 2-s2.0-85138468760 -
dc.identifier.bibliographicCitation Jung, Euijin. (2023-01). Conditional GAN with 3D discriminator for MRI generation of Alzheimer's disease progression. Pattern Recognition, 133. doi: 10.1016/j.patcog.2022.109061 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor 3D Discriminator -
dc.subject.keywordAuthor Adaptive identity loss -
dc.subject.keywordAuthor Alzheimer&apos -
dc.subject.keywordAuthor s disease -
dc.subject.keywordAuthor Conditional GAN -
dc.subject.keywordAuthor Magnetic resonance image generation -
dc.citation.title Pattern Recognition -
dc.citation.volume 133 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Computer Science; Engineering -
dc.relation.journalWebOfScienceCategory Computer Science, Artificial Intelligence; Engineering, Electrical & Electronic -
dc.type.docType Article -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

박상현
Park, Sang Hyun박상현

Department of Robotics and Mechatronics Engineering

read more

Total Views & Downloads