Detail View

OpenHD: A GPU-Powered Framework for Hyperdimensional Computing
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

Title
OpenHD: A GPU-Powered Framework for Hyperdimensional Computing
Issued Date
2022-11
Citation
Kang, Jaeyoung. (2022-11). OpenHD: A GPU-Powered Framework for Hyperdimensional Computing. IEEE Transactions on Computers, 71(11), 2753–2765. doi: 10.1109/TC.2022.3179226
Type
Article
Author Keywords
Brain-inspired hyperdimensional computingmachine learningedge computing
ISSN
0018-9340
Abstract
Hyperdimensional computing (HDC) has emerged as an alternative lightweight learning solution to deep neural networks. A key characteristic of HDC is the great extent of parallelism that can facilitate hardware acceleration. However, previous hardware implementations of HDC seldom focus on GPU designs, which were also inefficient partly due to the complexity of accelerating HDC on GPUs. In this paper, we present OpenHD, a flexible and high-performance GPU-powered framework for automating the mapping of general HDC applications including classification and clustering to GPUs. OpenHD takes advantage of memory optimization strategies specialized for HDC, minimizing the access time to different memory subsystems, and removing redundant operations. We also propose a novel training method to enable data parallelism in the HDC training. Our evaluation result shows that the proposed training rapidly achieves the target accuracy, reducing the required training epochs by 4x. With OpenHD, users can deploy GPU-accelerated HDC applications without domain expert knowledge. Compared to the state-of-the-art GPU-powered HDC implementation, our evaluation on NVIDIA Jetson TX2 shows that OpenHD is up to 10.5x and 314x faster for HDC-based classification and clustering, respectively. Compared with non-HDC classification and clustering on GPUs, HDC powered by OpenHD, is 11.7x and 53x faster at comparable accuracy. IEEE
URI
http://hdl.handle.net/20.500.11750/17283
DOI
10.1109/TC.2022.3179226
Publisher
Institute of Electrical and Electronics Engineers
Show Full Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

김예성
Kim, Yeseong김예성

Department of Electrical Engineering and Computer Science

read more

Total Views & Downloads