Detail View

Simulation of an innovative polymer electrolyte membrane fuel cell design for self-control thermal management
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Bates, Alex -
dc.contributor.author Hwang, Sunwook -
dc.contributor.author Mukherjee, Santanu -
dc.contributor.author Lee, Sang C. -
dc.contributor.author Kwon, Osung -
dc.contributor.author Choi, Gyeung Ho -
dc.contributor.author Park, Sam -
dc.date.available 2017-07-05T08:56:23Z -
dc.date.created 2017-04-10 -
dc.date.issued 2013-07 -
dc.identifier.issn 0360-3199 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/2428 -
dc.description.abstract Two novel fuel cell designs attempt to improve efficiency and reduce the balance of plant weight by implementing a square hole through the center of the bipolar plates. Air is forced through the square hole for the purpose of oxygen delivery, water removal, and stack cooling. This study demonstrates, for the two novel designs, a more even temperature distribution and hot spots away from the center of the bipolar plates. This reduces the number and size of components required to effectively run the system, thus reducing the weight of the balance of plant. Four simulations are presented in this paper, with inlet gases and initial cell temperature set to 333 K. The maximum temperature for case 1 without cooling is 347.97 K, case 1 with water cooling is 335.29 K, case 2 with forced air cooling is 339.42 K, and case 3 with forced air cooling is 335.13 K. © Copyright © 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. -
dc.publisher Elsevier Ltd -
dc.title Simulation of an innovative polymer electrolyte membrane fuel cell design for self-control thermal management -
dc.type Article -
dc.identifier.doi 10.1016/j.ijhydene.2013.04.114 -
dc.identifier.wosid 000321728000021 -
dc.identifier.scopusid 2-s2.0-84879226141 -
dc.identifier.bibliographicCitation Bates, Alex. (2013-07). Simulation of an innovative polymer electrolyte membrane fuel cell design for self-control thermal management. International Journal of Hydrogen Energy, 38(20), 8422–8436. doi: 10.1016/j.ijhydene.2013.04.114 -
dc.subject.keywordAuthor Polymer electrolyte membrane fuel cell -
dc.subject.keywordAuthor Thermal management -
dc.subject.keywordAuthor Flow design -
dc.subject.keywordAuthor Heat transfer -
dc.subject.keywordAuthor Hot spot -
dc.subject.keywordPlus PREDICTION -
dc.subject.keywordPlus PEMFC -
dc.subject.keywordPlus MODEL -
dc.citation.endPage 8436 -
dc.citation.number 20 -
dc.citation.startPage 8422 -
dc.citation.title International Journal of Hydrogen Energy -
dc.citation.volume 38 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Chemistry; Electrochemistry; Energy & Fuels -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Electrochemistry; Energy & Fuels -
dc.type.docType Article -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

이상철
Lee, Sang Cheol이상철

Division of Intelligent Robotics

read more

Total Views & Downloads