Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Yoo, Woosuk -
dc.contributor.author Choo, Seongmin -
dc.contributor.author Lee, Kyujoon -
dc.contributor.author Jo, Sinyong -
dc.contributor.author You, Chun-Yeol -
dc.contributor.author Hong, Jung-Il -
dc.contributor.author Jung, Myung-Hwa -
dc.date.available 2017-07-11T05:44:30Z -
dc.date.created 2017-04-10 -
dc.date.issued 2015-11 -
dc.identifier.issn 0018-9464 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/2826 -
dc.description.abstract We prepared bilayer systems composed of the ferromagnetic (FM) layer Ni0.8Fe0.2 and the anti-FM (AFM) layer CoxNi1-xO (x = 0.3, 0.4, 0.5, and 0.6) using the dc/RF magnetron sputtering methods. Coercive field HC and exchange bias field HE , the shift field in hysteresis loop, were observed in all the Ni0.8Fe0.2/CoxNi1-xO bilayer systems after field cooling. The changes of HC and HE were explicitly studied for various parameters, such as the composition of AFM material x, the measured temperature T, and the direction of applied magnetic field. Measured anisotropic magnetoresistance (AMR) was analyzed to extract the HC and HE , since the peaks (maximum or minimum) in AMR do not appear exactly at the coercive field HC of the magnetic hysteresis measurement. We propose a new approach for the analysis of AMR to determine HC and HEB along the field angle θ with respect to the field-cooling direction. The results were compared with the variations of HEB and HC reported earlier. © 2015 IEEE. -
dc.publisher Institute of Electrical and Electronics Engineers Inc. -
dc.title Exchange Bias Effect Determined by Anisotropic Magnetoresistance in CoxNi1-xO/Ni0.8Fe0.2 Bilayer System -
dc.type Article -
dc.identifier.doi 10.1109/TMAG.2015.2435738 -
dc.identifier.scopusid 2-s2.0-84946121281 -
dc.identifier.bibliographicCitation IEEE Transactions on Magnetics, v.51, no.11 -
dc.subject.keywordAuthor Anisotropic magnetoresistance (AMR) -
dc.subject.keywordAuthor exchange bias -
dc.subject.keywordAuthor magnetic anisotropy -
dc.subject.keywordAuthor magnetic films -
dc.subject.keywordPlus Anisotropic Magnetoresistance -
dc.subject.keywordPlus Anisotropic Magnetoresistance (AMR) -
dc.subject.keywordPlus ANISOTROPY -
dc.subject.keywordPlus Applied Magnetic Fields -
dc.subject.keywordPlus Coercive Force -
dc.subject.keywordPlus Cooling Systems -
dc.subject.keywordPlus Enhanced Magnetoresistance -
dc.subject.keywordPlus Exchange-Bias Fields -
dc.subject.keywordPlus Exchange Bias -
dc.subject.keywordPlus Exchange Bias Effects -
dc.subject.keywordPlus Ferromagnetic Layers -
dc.subject.keywordPlus Hysteresis -
dc.subject.keywordPlus Hysteresis Measurements -
dc.subject.keywordPlus MAGNETIC-ANISOTROPY -
dc.subject.keywordPlus Magnetic Anisotropy -
dc.subject.keywordPlus Magnetic Films -
dc.subject.keywordPlus Magnetic Materials -
dc.subject.keywordPlus Magnetism -
dc.subject.keywordPlus MAGNETORESISTANCE -
dc.subject.keywordPlus Magnetron Sputtering Method -
dc.subject.keywordPlus Measured Temperatures -
dc.subject.keywordPlus Nickel -
dc.subject.keywordPlus NiO -
dc.subject.keywordPlus Resonance -
dc.subject.keywordPlus SPIN-VALVES -
dc.citation.number 11 -
dc.citation.title IEEE Transactions on Magnetics -
dc.citation.volume 51 -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Physics and Chemistry Spin Nanotech Laboratory 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE