Cited 0 time in webofscience Cited 21 time in scopus

Microdroplet fusion mass spectrometry: Accelerated kinetics of acid-induced chlorophyll demetallation

Microdroplet fusion mass spectrometry: Accelerated kinetics of acid-induced chlorophyll demetallation
Lee, Jae KyooNam, Hong GilZare, Richard N.
DGIST Authors
Lee, Jae Kyoo; Nam, Hong Gil; Zare, Richard N.
Issue Date
Quarterly Reviews of Biophysics, 50, 1-7
Article Type
Charged MicrodropletsElectrosprayNeat WaterWater Surface
Kinetics of acid-induced chlorophyll demetallation was recorded in microdroplets by fusing a stream of microdroplets containing 40 μM chlorophyll a or b dissolved in methanol with a stream of aqueous microdroplets containing 35 mM hydrochloric acid (pH = 1-46). The kinetics of the demetallation of chlorophyll in the fused microdroplets (14 ± 6 μm diameter; 84 ± 18 m s-1 velocity) was recorded by controlling the traveling distance of the fused microdroplets between the fusion region and the inlet of a mass spectrometer. The rate of acid-induced chlorophyll demetallation was about 960 ± 120 times faster in the charged microdroplets compared with that reported in bulk solution. If no voltage was applied to the sprayed microdroplets, then the acceleration factor was about 580 ± 90, suggesting that the applied voltage is not a major factor determining the acceleration. Chlorophyll a was more rapidly demetallated than chlorophyll b by a factor of ∼26 in bulk solution and ∼5 in charged microdroplets. The demetallation kinetics was second order in the H+ concentration, but the acceleration factor of microdroplets compared with bulk solution appeared to be unchanged in going from pH = 1-3 to 7-0. The water:methanol ratio of the fused microdroplets was varied from 7:3 to 3:7 causing an increase in the reaction rate of chlorophyll a demetallation by 20%. This observation demonstrates that the solvent composition, which has different evaporation rates, does not significantly affect the acceleration. We believe that a major portion of the acceleration can be attributed to confinement effects involving surface reactions rather than either to evaporation of solvents or to the introduction of charges to the microdroplets. © Cambridge University Press 2017.
Cambridge University Press
Related Researcher
  • Author Nam, Hong Gil CBRG(Complex Biology Research Group)
  • Research Interests Plant Aging and Life History; Systems Biology; Complexbiology; Comparative Aging Research
There are no files associated with this item.
Department of New BiologyCBRG(Complex Biology Research Group)1. Journal Articles

qrcode mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.