Cited time in webofscience Cited time in scopus

Latency Analysis for Real-Time Sensor Sharing Using 4G/5G C-V2X Uu Interfaces

Latency Analysis for Real-Time Sensor Sharing Using 4G/5G C-V2X Uu Interfaces
Choi, SinukKwon, DongyoonChoi, Ji-Woong
Issued Date
IEEE Access, v.11, pp.35197 - 35206
Author Keywords
Vehicle-to-everythingReal-time systemsStreaming mediaLong Term EvolutionCommunication systems5G mobile communicationServersRemote drivingsensor sharingcellular communication systemend-to-end latencyvehicle-to-everythingcellular network latency
With the development of communications, various applications of communication technologies, such as remote driving, delivery drones, and telesurgery, are emerging. In particular, in many cases, these applications need real-time video transmission services, and they should support low latency for operation reliability and quick response in emergencies. Sensor sharing is required to support advanced communication services, but the latency analysis of device-to-remote users or remote servers with high data traffic is insufficient. Most related works have device-to-device communication or low data traffic messages for basic device status sharing. However, the latency analysis of sensor sharing between a device and a remote server or remote user is essential to support advanced communication services such as autonomous driving utilizing data offloading and device operation by remote users via the base station and server. Therefore, in this paper, we analyze the end-to-end latency and latency elements for video sharing, which is the most representative sensor in 4G long-term evolution (LTE) and 5G new radio (NR) Uu interfaces. In addition, we derive the supportable video resolution according to the raw video and encoded video transmission in each communication system. For each video resolution level, we analyze which latency elements have a significant effect on the end-to-end latency. Depending on each communication system, we investigate the number of users for the real-time sensor-sharing system that can be supported at the same time. Simulation results show that the LTE Uu interface supports up to full high definition (FHD) video resolution, and the 5G Uu interface supports up to ultrahigh definition (UHD). Additionally, the results show that only a single user can be supported with the FHD resolution level in the LTE Uu interface, whereas up to 19 users can be supported in the 5G Uu interface. © IEEE.
Institute of Electrical and Electronics Engineers Inc.
Related Researcher
  • 최지웅 Choi, Ji-Woong 전기전자컴퓨터공학과
  • Research Interests Communication System; Signal Processing; Communication Circuit Design; 생체 신호 통신 및 신호 처리; 뇌-기계 인터페이스(BMI); 차세대 교차계층 통신 및 신호 처리; 5G 모바일 통신
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Electrical Engineering and Computer Science CSP(Communication and Signal Processing) Lab 1. Journal Articles


  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.