Detail View

Enhancing Viability of Human Embryonic Stem Cells during Cryopreservation via RGD-REP-Mediated Activation of FAK/AKT/FoxO3a Signaling Pathway
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

Title
Enhancing Viability of Human Embryonic Stem Cells during Cryopreservation via RGD-REP-Mediated Activation of FAK/AKT/FoxO3a Signaling Pathway
Issued Date
2023-12
Citation
Kim, Jeong Hee. (2023-12). Enhancing Viability of Human Embryonic Stem Cells during Cryopreservation via RGD-REP-Mediated Activation of FAK/AKT/FoxO3a Signaling Pathway. Tissue Engineering and Regenerative Medicine, 20(7), 1133–1143. doi: 10.1007/s13770-023-00568-3
Type
Article
Author Keywords
Human embryonic stem cellIn vitro cultureExtracellular matrixRGD motifCryopreservation
Keywords
EXTRACELLULAR-MATRIXADHESIONRECEPTORSMIGRATIONANOIKIS
ISSN
1738-2696
Abstract
Background: Cryopreservation is a crucial method for long-term storage and stable allocation of human pluripotent stem cells (hPSCs), which are increasingly being used in various applications. However, preserving hPSCs in cryogenic conditions is challenging due to reduced recovery rates. Methods: To address this issue, the Arginine-Glycine-Aspartate (RGD) motif was incorporated into a recombinant elastin-like peptide (REP). Human embryonic stem cells (hESCs) were treated with REP containing RGD motif (RGD-REP) during suspension and cryopreservation, and the survival rate was analyzed. The underlying mechanisms were also investigated. Results: The addition of RGD-REP to the cryopreservation solution improved cell survival and pluripotency marker expression. The improvement was confirmed to be due to the activation of the FAK-AKT cascade by RGD-REP binding to hESC surface interin protein, and consequent inhibition of FoxO3a. The inactivation of FoxO3a reduced the expression of apoptosis-related genes, such as BIM, leading to increased survival of PSCs in a suspension state. Conclusion: RGD-REP, as a ligand for integrin protein, improves the survival and maintenance of hPSCs during cryopreservation by activating survival signals via the RGD motif. These results have potential implications for improving the efficiency of stem cell usage in both research and therapeutic applications. © 2023, Korean Tissue Engineering and Regenerative Medicine Society.
URI
http://hdl.handle.net/20.500.11750/46679
DOI
10.1007/s13770-023-00568-3
Publisher
Korean Tissue Engineering and Regenerative Medicine Society
Show Full Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

이윤일
Lee, Yun-Il이윤일

Division of Biomedical Technology

read more

Total Views & Downloads