WEB OF SCIENCE
SCOPUS
In this paper, the parametric identification is addressed by a kernel-based model with covariance and a novel model order selection algorithm. The kernel-based model is uti-lized for training the sampled frequency response characteristics, which is insufficient for parametric identification because of noisy and discrete data. The kernel-based frequency response model improves the parametric identification by using the high covariance data. In addition, prior knowledge of the model order is essential for parametric identification. This paper proposes a novel model order selection based on the robust stability criterion of disturbance observer (DOB). The effectiveness of the proposed algorithm is verified through numerical simulations under several conditions. © 2022 IEEE.
더보기