Detail View

Real-time Head Detection for Automated Passenger Counting in Embedded Systems
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Kim, Hyunduk -
dc.contributor.author Lee, Sang-Heon -
dc.contributor.author Sohn, Myoung-Kyu -
dc.date.accessioned 2023-12-26T19:42:24Z -
dc.date.available 2023-12-26T19:42:24Z -
dc.date.created 2020-06-30 -
dc.date.issued 2019-09-27 -
dc.identifier.isbn 9781450376617 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/46977 -
dc.description.abstract Head detection is a key problem for automated passenger counting systems. In recent decades, considerable effort has been expended to develop an accurate and reliable head detector. However, head detection is still a challenging task because of problems caused by variations in pose and occlusions. Recently, general object detection algorithms based on convolutional neural networks (CNNs), such as Faster R-CNN, SSD and YOLO, have been successful. However, these algorithms require the use of a Graphics Processing Unit (GPU) for real-time performance. In this study, we focused on developing real-time head detection in an embedded system. Starting with the Tiny-YOLOv3 network, we applied the following strategies to achieve real-time performance in a non-GPU environment. First, we reduced the input image size to 224x224. Second, we added an extra yolo layer to detect smaller heads. Third, we removed batch normalization. Finally, we conducted depthwise separable convolution rather than traditional convolution. Three public datasets, HollywoodHeads, SCUT-HEAD, and CrowdHuman, were exploited to train and test the proposed network, and Average Precision (AP) at Intersection over Unit (IoU) = 0.5 were used to evaluate the tests. Experimental results showed that the proposed network perform better and faster than Tiny-YOLOv3. © 2019 ACM. -
dc.language English -
dc.publisher Association for Computing Machinery -
dc.relation.ispartof ISCSIC 2019: Proceedings of the 2019 3rd International Symposium on Computer Science and Intelligent Control -
dc.title Real-time Head Detection for Automated Passenger Counting in Embedded Systems -
dc.type Conference Paper -
dc.identifier.doi 10.1145/3386164.3389086 -
dc.identifier.scopusid 2-s2.0-85123042404 -
dc.identifier.bibliographicCitation 2019 3rd International Symposium on Computer Science and Intelligent Control, ISCSIC 2019 -
dc.identifier.url http://admin.iased.org/ueditor/php/upload/file/20190713/1563001066982702.pdf -
dc.citation.conferenceDate 2019-09-25 -
dc.citation.conferencePlace NE -
dc.citation.conferencePlace Amsterdam -
dc.citation.title 2019 3rd International Symposium on Computer Science and Intelligent Control, ISCSIC 2019 -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

이상헌
Lee, Sang-Heon이상헌

Division of Mobility Technology

read more

Total Views & Downloads