Communities & Collections
Researchers & Labs
Titles
DGIST
LIBRARY
DGIST R&D
Detail View
Division of Mobility Technology
2. Conference Papers
Real-time Head Detection for Automated Passenger Counting in Embedded Systems
Kim, Hyunduk
;
Lee, Sang-Heon
;
Sohn, Myoung-Kyu
Division of Mobility Technology
2. Conference Papers
Citations
WEB OF SCIENCE
Citations
SCOPUS
Metadata Downloads
XML
Excel
Title
Real-time Head Detection for Automated Passenger Counting in Embedded Systems
Issued Date
2019-09-27
Citation
2019 3rd International Symposium on Computer Science and Intelligent Control, ISCSIC 2019
Type
Conference Paper
ISBN
9781450376617
Abstract
Head detection is a key problem for automated passenger counting systems. In recent decades, considerable effort has been expended to develop an accurate and reliable head detector. However, head detection is still a challenging task because of problems caused by variations in pose and occlusions. Recently, general object detection algorithms based on convolutional neural networks (CNNs), such as Faster R-CNN, SSD and YOLO, have been successful. However, these algorithms require the use of a Graphics Processing Unit (GPU) for real-time performance. In this study, we focused on developing real-time head detection in an embedded system. Starting with the Tiny-YOLOv3 network, we applied the following strategies to achieve real-time performance in a non-GPU environment. First, we reduced the input image size to 224x224. Second, we added an extra yolo layer to detect smaller heads. Third, we removed batch normalization. Finally, we conducted depthwise separable convolution rather than traditional convolution. Three public datasets, HollywoodHeads, SCUT-HEAD, and CrowdHuman, were exploited to train and test the proposed network, and Average Precision (AP) at Intersection over Unit (IoU) = 0.5 were used to evaluate the tests. Experimental results showed that the proposed network perform better and faster than Tiny-YOLOv3. © 2019 ACM.
URI
http://hdl.handle.net/20.500.11750/46977
DOI
10.1145/3386164.3389086
Publisher
Association for Computing Machinery
Show Full Item Record
File Downloads
There are no files associated with this item.
공유
공유하기
Related Researcher
Lee, Sang-Heon
이상헌
Division of Mobility Technology
read more
Total Views & Downloads